Transgene expression in mice of the Opa1 mitochondrial transmembrane protein by means of bicontinuous cubic lipoplexes containing gemini imidazolium surfactants | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Dunbar CE, Excessive KA, Joung JK, Kohn DB, Ozawa Okay, Sadelain M. Gene remedy comes of age. Science. 2018;359:6372.


    Google Scholar
     

  • 2.

    Safinya CR, Ewert Okay, Ahmad A, Evans HM, Raviv U, Needleman DJ, Lin AJ, Slack NL, George C, Samuel CE. Cationic liposome–nucleic acid complexes for gene supply and gene silencing. Philos Trans R Soc A. 2006;364:2573–96.

    CAS 

    Google Scholar
     

  • 3.

    Luten J, van Nostrum CF, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA supply. J Managed Launch. 2008;126:97–110.

    CAS 

    Google Scholar
     

  • 4.

    Felgner JH, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Proc Natl Acad Sci USA. 1987;84:7413–7.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 5.

    Radler JO, Koltover I, Salditt T, Safinya CR. Science. 1997;275:810.

    PubMed 
    CAS 

    Google Scholar
     

  • 6.

    Koltover I, Salditt T, Rädler JO, Safinya CR. An inverted hexagonal section of cationic liposome–DNA complexes associated to DNA launch and supply. Science. 1998;281:78–81.

    PubMed 
    CAS 

    Google Scholar
     

  • 7.

    Junquera E, Aicart E. Latest progress in gene remedy to ship nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci. 2016;233:161–75.

    PubMed 
    CAS 

    Google Scholar
     

  • 8.

    de la Fuente-Herreruela D, Monnappa AK, Muñoz-Úbeda M, Morallón-Piña A, Enciso E, Sánchez L, Giusti F, Natale P, López-Montero I. Lipid–peptide bioconjugation by means of pyridyl disulfide response chemistry and its software in cell concentrating on and drug supply. J Nanobiotechnol. 2019;17:77.


    Google Scholar
     

  • 9.

    Farhood H, Serbina N, Huang L. The function of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene switch. Biochim Biophys Acta. 1995;1235:289–95.

    PubMed 

    Google Scholar
     

  • 10.

    Rappolt M, Hickel A, Bringezu F, Lohner Okay. Mechanism of the lamelar/inverse hexagonal section transition examined by excessive decision X-ray diffraction. Biophys J. 2003;84:3111–22.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 11.

    Sarkar S, Tran N, Rashid MH, Le TC, Yarovsky I, Conn CE, Drummond CJ. Towards cell membrane biomimetic lipidic cubic phases: a high-throughput exploration of lipid compositional area. ACS Appl Bio Mater. 2019;2:182–95.

    CAS 

    Google Scholar
     

  • 12.

    Leal C, Bouxsein NF, Ewert KK, Safinya CR. Extremely environment friendly gene silencing exercise of siRNA embedded in a nanostructured gyroid cubic lipid matrix. J Am Chem Soc. 2010;132:16841–7.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 13.

    Martínez-Negro M, Kumar Okay, Barrán-Berdón AL, Datta S, Kondaiah P, Junquera E, Bhattacharya S, Aicart E. Environment friendly mobile knockdown mediated by siRNA nanovectors of gemini cationic lipids having delocalizable headgroups and oligo-oxyethylene spacers. ACS Appl Mater Interfaces. 2016;8:22113–26.

    PubMed 

    Google Scholar
     

  • 14.

    Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. Med Chem Comm. 2018;9:1404–25.

    CAS 

    Google Scholar
     

  • 15.

    Juliano RL. Elements affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions. Adv Drug Deliv Rev. 1988;2:31–54.

    CAS 

    Google Scholar
     

  • 16.

    Yadav MR, Kumar M, Murumkar PR, Hazari PP, Mishra AK. Gemini amphiphile-based lipoplexes for environment friendly gene supply: synthesis, formulation growth, characterization, gene transfection, and biodistribution research. ACS Omega. 2018;3:11802–16.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 17.

    Allen TM, Hansen C, Martin F, Redemann C, Yau-Younger A. Liposomes containing artificial lipid derivatives of poly(ethylene glycol) present extended circulation half-lives in vivo. Biochim Biophys Acta. 1991;1066:29–36.

    PubMed 
    CAS 

    Google Scholar
     

  • 18.

    Bai J, Liu Y, Solar W, Chen J, Miller AD, Xu Y. Down-regulated lysosomal processing improved pegylated lipopolyplex-mediated gene transfection. J Gene Med. 2013;15:182–92.

    PubMed 
    CAS 

    Google Scholar
     

  • 19.

    Gjetting T, Arildsen NS, Christensen CL, Poulsen TT, Roth JA, Handlos VN, Poulsen HS. In Vitro and in Vivo Results of Polyethylene Glycol (PEG)-modified Lipid in DOTAP/cholesterol-mediated Gene Transfection. Int J Nanomedicine. 2010;5:371–83.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 20.

    Bombelli C, Faggioli F, Luciani P, Mancini G, Sacco MG. PEGylated lipoplexes: preparation protocols affecting DNA condensation and cell transfection effectivity. J Med Chem. 2007;50:6274–8.

    PubMed 
    CAS 

    Google Scholar
     

  • 21.

    Muñoz-Úbeda M, Misra SK, Barrán-Berdón AL, Aicart-Ramos C, Sierra MB, Biswas J, Kondaiah P, Junquera E, Bhattacharya S, Aicart E. Why is much less cationic lipid required to arrange lipoplexes from plasmid DNA than linear DNA in gene remedy? J Am Chem Soc. 2011;133:18014–7.

    PubMed 

    Google Scholar
     

  • 22.

    Muñoz-Úbeda M, Misra SK, et al. How does the spacer size of cationic gemini lipids affect the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene remedy. Biomacromol. 2012;13:3926–37.


    Google Scholar
     

  • 23.

    Martínez-Negro M, Kumar Okay, Barrán-Berdón AL, Datta S, Kondaiah P, Junquera E, Bhattacharya S, Aicart E. Environment friendly mobile knockdown mediated by siRNA nanovectors of gemini cationic lipids having delocalizable headgroups and oligooxyethylene spacers. ACS Appl Mater Interfaces. 2016;8:22113–26.

    PubMed 

    Google Scholar
     

  • 24.

    Kumar Okay, Barrán-Berdón AL, Datta S, Muñoz-Úbeda M, et al. A delocalizable cationic headgroup along with an oligooxyethylene spacer in gemini cationic lipids improves their organic exercise as vectors of plasmid DNA. J Mater Chem B. 2015;3:1495–506.

    PubMed 
    CAS 

    Google Scholar
     

  • 25.

    Misra SK, Muñoz-Úbeda M, Datta S, Barrán-Berdón AL, et al. Results of a delocalizable cation on the headgroup of gemini lipids on the Lipoplex-type nanoaggregates instantly shaped from plasmid DNA. Biomacromol. 2013;14:3951–63.

    CAS 

    Google Scholar
     

  • 26.

    Muñoz-Úbeda M, Tolosa-Díaz A, Bhattacharya S, Junquera E, Aicart E, Natale P, López-Montero I. Gemini-based lipoplexes complement the mitocondrial phenotype in MFN1-Knockout Fibroblasts. Mol Pharm. 2019;16:4787–96.

    PubMed 

    Google Scholar
     

  • 27.

    Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99.

    PubMed 
    CAS 

    Google Scholar
     

  • 28.

    Olichon A, Emorine LJ, Descoins E, Pelloquin L, Brichese L, Luptak I, Guillou E, Delettre C, Valette A, Hamel CP, et al. The human dynamin—associated protein OPA1 is anchored to the mitochondrial inside membrane going through the inner-membrane area. FEBS Lett. 2002;523:171–6.

    PubMed 
    CAS 

    Google Scholar
     

  • 29.

    Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26:207–10.

    PubMed 
    CAS 

    Google Scholar
     

  • 30.

    Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to advertise mitochondrial fusion. Proc Natl Acad Sci USA. 2004; 101: 15927–15932.

  • 31.

    Detmer SA, Chan DC. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects attributable to CMT2A illness mutations. J Cell Biol. 2007;176:405–14.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 32.

    Cardoso AM, Morais CM, Cruz AR, Cardoso AL, Silva SG, Luisa M, Marques EF, Pedroso MC, Jurado AS. Gemini surfactants mediate environment friendly mitochondrial gene supply and expression. Mol Pharm. 2015;12:716–30.

    PubMed 
    CAS 

    Google Scholar
     

  • 33.

    Lin AJ, Slack NL, Ahmad A, George CX, Samuel CE, Safinya CR. Three-dimensional imaging of lipid gene-carriers: membrane cost density controls common transfection habits in lamellar cationic liposome-dna complexes. Biophys J. 2003;84:3307–16.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 34.

    Mezzenga R, Meyer C, Servais C, Romoscanu AI, Sagalowicz L, Hayward RC. Shear rheology of lyotropic liquid crystals: a case examine. Langmuir. 2005;21:3322–33.

    PubMed 
    CAS 

    Google Scholar
     

  • 35.

    Leung SSW, Leal C. The stabilization of primitive bicontinuous cubic phases with tunable swelling over a large composition vary. Comfortable Matter. 2019;15:1269–77.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 36.

    Briggs J, Chung H, Caffrey M. The temperature-composition section diagram and mesophase construction characterization of the monoolein/water system. J Phys. 1996;II(6):723–51.


    Google Scholar
     

  • 37.

    Tyler AII, Barriga HMG, Parsons ES, McCarthy NLC, Ces O, Regulation RV, Seddon JM, Brooks NJ. Electrostatic swelling of bicontinuous cubic lipid phases. Comfortable Matter. 2015;11:3279–86.

    PubMed 
    CAS 

    Google Scholar
     

  • 38.

    Bilalov A, Olsson U, Lindman B. A cubic DNA-Lipid advanced. Comfortable Matter. 2009;5:3827–30.

    CAS 

    Google Scholar
     

  • 39.

    Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA. A easy ImageJ macro software for analyzing mitochondrial community morphology in mammalian cell tradition. Acta Histochemia. 2017;119:315–26.

    CAS 

    Google Scholar
     

  • 40.

    Delettre C, Griffoin JM, Kaplan J, Dolfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP. Mutation spectrum and splicing variants within the OPA1 gene. Hum Genet. 2001;109:584–91.

    PubMed 
    CAS 

    Google Scholar
     

  • 41.

    Akepati VR, Müller EC, Otto A, Strauss HM, Portwich M, Alexander C. Characterization of OPA1 isoforms remoted from mouse tissues. J Neurochem. 2008;106:372–83.

    PubMed 
    CAS 

    Google Scholar
     

  • 42.

    Music Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178:749–55.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 43.

    Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T. The i-AAA protease YME1L and OMA1 cleave OPA1 to steadiness mitochondrial fusion and fission. J Cell Biol. 2014;204:919–29.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 44.

    Lee H, Smith SB, Yoon Y. The brief variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae construction. J Biol Chem. 2017;292:7115–30.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 45.

    Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose Okay, MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L, Harper ME, Germain M, Slack RS. OPA1-dependent cristae modulation is crucial for mobile adaptation to metabolic demand. EMBO. 2014;33:2676–91.

    CAS 

    Google Scholar
     

  • 46.

    Del Dotto V, Mishra P, Vidoni S, Fogazza M, Maresca A, Caporali L, McCaffery JM, Cappelletti M, Baruffini E, Lenaers G, Chan D, Rugolo M, Carelli V, Zanna C. OPA1 isoforms within the hierarchical group of mitochondrial features. Cell Rep. 2017;19:2557–71.

    PubMed 

    Google Scholar
     

  • 47.

    Nolan T, Arms RE, Bustin SA. Quantification of mRNA utilizing real-time RT-PCR. Nat Protoc. 2006;1:1559–82.

    PubMed 
    CAS 

    Google Scholar
     

  • 48.

    Gene remedy scientific trials worldwide to 2017: An replace

  • 49.

    Li SD, Huang L. Non-viral Is Superior to Viral Gene Supply. J Management Launch. 2007;123:181–3.

    PubMed 
    CAS 

    Google Scholar
     

  • 50.

    Zhu N, Liggitt D, Liu Y, Debs R. Systemic gene expression after intravenous DNA supply into grownup mice. Science. 1993;261:209–11.

    PubMed 
    CAS 

    Google Scholar
     

  • 51.

    Thierry AR, Lunardi-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC. Systemic gene remedy: biodistribution and long-term expression of a transgene in mice. PNAS. 1995;92:9742–6.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 52.

    Liu Y, Liggitt D, Zhong W, Tu G, Gaensler Okay, Debs R. Cationic liposome-mediated intravenous gene supply. J Biol Chem. 1995;270:24864–70.

    PubMed 
    CAS 

    Google Scholar
     

  • 53.

    Parker SE, Ducharme S, Norman J, Wheeler CJ. Tissue distribution of the cytofectin element of a plasmid-DNA/cationic lipid advanced following intravenous administration in mice. Hum Gene Ther. 1997;8:393–401.

    PubMed 
    CAS 

    Google Scholar
     

  • 54.

    Liu F, Qi H, Huang L, Liu D. Elements controlling the effectivity of cationic lipid-mediated transfection in vivo through intravenous administration. Gene Ther. 1997;4:517–23.

    PubMed 
    CAS 

    Google Scholar
     

  • 55.

    Brigham KL, Meyrick B, Christman B, Magnuson M, King G, Berry LC. In vivo transfection of murine lungs with a functioning prokaryotic gene utilizing a liposome car. Am J Med Sci. 1989;298:278–81.

    PubMed 
    CAS 

    Google Scholar
     

  • 56.

    Mahato RI, Anwer Okay, Tagliaferri F, Meaney C, Leonard P, Wadhwa MS, Logan M, French M, Rolland A. Biodistribution and gene expression of lipid/plasmid complexes after systemic administration. Hum Gene Ther. 1998;9:2083–99.

    PubMed 
    CAS 

    Google Scholar
     

  • 57.

    McClarrinon M, Gilkey L, Watral V, Fox B, Bullock C, Fradkin L, Liggitt D, Roche L, Bussey LB, Fox E, Gorman C. In Vivo Research of Gene Expression through Transient Transgenesis Utilizing lipid-DNA Supply. DNA Cell Biol. 1999;18:533–47.

    PubMed 
    CAS 

    Google Scholar
     

  • 58.

    Hofland HE, Nagy D, Liu JJ, Spratt Okay, Lee YL, Danos O, Sullivan SM. In vivo gene switch by intravenous administration of steady cationic lipid/DNA advanced. Pharm Res. 1997;14:742–9.

    PubMed 
    CAS 

    Google Scholar
     

  • 59.

    Music YK, Liu F, Chu S, Liu D. Characterization of cationic liposome mediated gene switch in vivo by intravenous administration. Hum Gene Ther. 1997;8:1585–94.

    PubMed 
    CAS 

    Google Scholar
     

  • 60.

    Barron LG, Gagné L, Szoka FC Jr. Lipoplex-mediated gene supply to the lung happens inside 60 minutes of intravenous administration. Hum Gene Ther. 1999;10:1683–94.

    PubMed 
    CAS 

    Google Scholar
     

  • 61.

    Opanasopit P, Nishikawa M, Hashida M. Elements affecting drug and gene supply: results of interplay with blood elements. Crit Rev Ther Drug Service Syst. 2002;19:191–233.

    PubMed 
    CAS 

    Google Scholar
     

  • 62.

    Badea I, Verrall R, Baca-Estrada M, Tikoo S, Rosenberg A, Kumar P, Foldvari M. In vivo cutaneous interferon-gamma gene supply utilizing novel dicationic (gemini) surfactant-plasmid complexes. J Gene Med. 2005;7:1200–14.

    PubMed 
    CAS 

    Google Scholar
     

  • 63.

    Alqawlaq S, Sivak JM, Huzil JT, Ivanova MV, Flanagan JG, Beazely MA, Foldvari M. Preclinical growth and ocular biodistribution of gemini-DNA nanoparticles after intravitreal and topical administration: in direction of non-invasive glaucoma gene remedy. Nanomedicine. 2014;10:1637–47.

    PubMed 
    CAS 

    Google Scholar
     

  • 64.

    Chien PY, Wang Y, Carbonaro D, Lei S, Miller B, Sheikh S, Ali SM, Ahmad MU, Ahmad I. Novel cationic cardiolipin analogue-based liposome for environment friendly DNA and small interfering RNA supply in vitro and in vivo. Most cancers Gene Ther. 2005;12:321–8.

    PubMed 
    CAS 

    Google Scholar
     

  • 65.

    Wasungu L, Scarzello M, van Dam G, Molema G, Wagenaar A, Engberts JBFN, Hoekstra D. Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene remedy functions. J Mol Med. 2006;84:774–84.

    PubMed 
    CAS 

    Google Scholar
     

  • 66.

    Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M, Menabò R, Costa V, Civiletto G, Pesce P, Viscomi C, Zeviani M, Di Lisa F, Mongillo M, Sandri M, Scorrano L. The OPA1-dependent mitochondrial cristae reworking pathway controls atrophic, apoptotic, and ischemic tissue harm. Cell Metab. 2015;21:834–44.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 67.

    Del Dotto V, Fogazza M, Lenaers G, Rugolo M, Carelli V, Zanna C. OPA1: how a lot do we all know to method remedy? Pharmacol Res. 2018;131:199–210.

    PubMed 

    Google Scholar
     

  • 68.

    Dotto V, Fogazza M, Carelli V, et al. Eight human OPA1 isoforms, lengthy and brief: What are they for? Bioenergetics. 2018;1859:263–9.

    PubMed 

    Google Scholar
     

  • 69.

    Petit L, Khanna H, Punzo C. Advances in gene remedy for illnesses of the attention. Hum Gene Ther. 2016;27:563–79.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 70.

    Yu-Wai-Man P, Votruba M, Burté F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol (Berl). 2016;132:789–806.

    CAS 

    Google Scholar
     

  • 71.

    Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene remedy: beneficial properties and challenges of non-invasive administration strategies. J Management Launch. 2016;240:165–90.

    PubMed 
    CAS 

    Google Scholar
     

  • 72.

    Pal A, Datta S, Aswal VK, Bhattacharya S. Small-angle neutron-scattering research of combined micellar buildings product of dimeric surfactants having imidazolium and ammonium headgroups. J Phys Chem B. 2012;116:13239–47.

    PubMed 
    CAS 

    Google Scholar
     

  • 73.

    Rodriguez-Pulido A, Aicart E, Llorca O, Junquera E. J Phys Chem B. 2008;112:2187–97.

    PubMed 
    CAS 

    Google Scholar
     

  • 74.

    Delgado AV. Interfacial electrokinetics and electrophoresis. New York: Marcel Dekker; 2002. p. 106.


    Google Scholar
     

  • 75.

    Oshima H, Furusawa Okay. Electrical phenomena at interfaces fundamentals: measurements and functions. New York; Marcel Dekker; 1998.


    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *