The trail to scalable quantum computing with silicon spin qubits

[ad_1]

  • 1.

    IBM Unveils a Quantum Computing Roadmap that Will Take Them to One Million Qubits and Past (Quantum Computing Report, 2021); https://quantumcomputingreport.com/ibm-unveils-a-quantum-computing-roadmap-that-will-take-them-to-onemillion-qubits-and-beyond/

  • 2.

    Rigetti Computing Introduces World’s First Scalable Multi-chip Quantum Processor (Rigetti Computing, 2021); https://www.globenewswire.com/news-release/2021/06/29/2255028/0/en/Rigetti-Computing-introduces-world-s-first-scalablemulti-chip-quantum-processor.html

  • 3.

    Veldhorst, M. et al. Nature 526, 410–414 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Hendrickx, N. W. et al. Nature 591, 580–585 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Stano, P. & Loss, D. Preprint at https://arxiv.org/abs/2107.06485 (2021).

  • 6.

    Huang, W. et al. Nature 569, 532–536 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Xue, X. et al. Preprint at https://arxiv.org/abs/2107.00628 (2021).

  • 8.

    Fowler, A. G. et al. Phys. Rev. A 86, 032324 (2012).

    Article 

    Google Scholar
     

  • 9.

    Vinet, M. et al. In the direction of scalable silicon quantum computing. In 2018 IEEE Worldwide Electron Units Assembly (IEDM) (IEEE, 2018).

  • 10.

    Petit, L. et al. Nature 580, 355–359 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Pla, J. J. et al. Nature 489, 541–545 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Maurand, R. et al. Nat. Commun. 7, 13575 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Nakamura, Y., Pashkin, Y. & Tsai, J. Nature 398, 786–788 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Loss, D. & DiVincenzo, D. Phys. Rev. A 57, 120 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Petta, J. R. et al. Science 309, 2180–2184 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Meunier, T. et al. Qubit read-out in semiconductor quantum processors: challenges and views. In 2019 IEEE Worldwide Electron Units Assembly (IEDM) (IEEE, 2019).

  • 17.

    Le Guevel, L. et al. Appl. Phys. Rev. 7, 041407 (2020).

    Article 

    Google Scholar
     

  • 18.

    Intel’s 10 nm Expertise: Delivering the Highest Logic Transistor Density within the Business By means of the Use of Hyper Scaling (Intel, 2017); https://newsroom.intel.com/newsroom/wp-content/uploads/websites/11/2017/09/10-nm-icf-fact-sheet.pdf

  • 19.

    Mazzocchi, V. et al. J. Cryst. Progress https://doi.org/10.1016/j.jcrysgro.2018.12.010 (2019).

  • 20.

    Thorbeck, T. & Zimmerman, N. M. AIP Adv. 5, 087107 (2015).

    Article 

    Google Scholar
     

  • 21.

    Zhang, Q. et al. IEEE Trans. Electron Units https://doi.org/10.1109/TED.2013.2295715 (2014).

  • 22.

    Gargini, P. Roadmap Previous, Current and Future. In Proc. Floor Preparation and Cleansing Convention, keynote presentation (SPCC, 2016).

  • 23.

    Langione, M. et al. The place Will Quantum Computer systems Create Worth—and When? (BCG, 2019); https://www.bcg.com/ennl/publications/2019/quantum-computers-create-value-when

  • 24.

    Vandersypen, L. & van Leeuwenhoek, A. Quantum computing – the following problem in circuit and system design. In 2017 IEEE Worldwide Strong-State Circuits Convention (ISSCC) (IEEE, 2017).

  • 25.

    Niquet, Y. M. et al. Challenges and views within the modeling of spin qubits. In 2020 IEEE Worldwide Electron Units Assembly (IEDM) (IEEE, 2020).

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *