Scalable two-step annealing technique for making ready ultra-high-density single-atom catalyst libraries
[ad_1]
Kaiser, S. Okay., Chen, Z., Faust Akl, D., Mitchell, S. & Pérez-Ramírez, J. Single-atom catalysts throughout the periodic desk. Chem. Rev. 120, 11703–11809 (2020).
Li, Z. et al. Nicely-defined supplies for heterogeneous catalysis: from nanoparticles to remoted single-atom websites. Chem. Rev. 120, 623–682 (2019).
Li, X., Yang, X., Huang, Y., Zhang, T. & Liu, B. Supported noble‐steel single atoms for heterogeneous catalysis. Adv. Mater. 31, 1902031 (2019).
Wang, Y. et al. Catalysis with two-dimensional supplies confining single atoms: idea, design, and functions. Chem. Rev. 119, 1806–1854 (2018).
Lin, L. et al. Low-temperature hydrogen manufacturing from water and methanol utilizing Pt/α-MoC catalysts. Nature 544, 80–83 (2017).
Datye, A. Okay. & Guo, H. Single atom catalysis poised to transition from a tutorial curiosity to an industrially related know-how. Nat. Commun. 12, 895 (2021).
Yang, X.-F. et al. Single-atom catalysts: a brand new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).
Qiao, B. et al. Single-atom catalysis of CO oxidation utilizing Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).
Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported steel catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2019).
Liu, D. et al. Atomically dispersed platinum supported on curved carbon helps for environment friendly electrocatalytic hydrogen evolution. Nat. Vitality 4, 512–518 (2019).
Jones, J. et al. Thermally steady single-atom platinum-on-ceria catalysts by way of atom trapping. Science 353, 150–154 (2016).
Nie, L. et al. Activation of floor lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).
Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).
Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous methods for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).
Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 manufacturing. Nat. Mater. 19, 436–442 (2020).
Beniya, A. & Higashi, S. In direction of dense single-atom catalysts for future automotive functions. Nat. Catal. 2, 590–602 (2019).
Ji, S. et al. Chemical synthesis of single atomic web site catalysts. Chem. Rev. 120, 11900–11955 (2020).
Ding, S., Hülsey, M. J., Pérez-Ramírez, J. & Yan, N. Remodeling vitality with single-atom catalysts. Joule 3, 2897–2929 (2019).
DeRita, L. et al. Catalyst structure for steady single atom dispersion allows site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).
Yang, H. B. et al. Atomically dispersed Ni(i) because the energetic web site for electrochemical CO2 discount. Nat. Vitality 3, 140–147 (2018).
Liu, Y. et al. A normal technique for fabricating remoted single steel atomic web site catalysts in Y zeolite. J. Am. Chem. Soc. 141, 9305–9311 (2019).
Fei, H. et al. Normal synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic actions. Nat. Catal. 1, 63–72 (2018).
He, X. et al. A flexible path to fabricate single atom catalysts with excessive chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 10, 3663 (2019).
Wei, H. et al. Iced photochemical discount to synthesize atomically dispersed metals by suppressing nanocrystal development. Nat. Commun. 8, 1490 (2017).
Yang, H. et al. A common ligand mediated technique for big scale synthesis of transition steel single atom catalysts. Nat. Commun. 10, 4585 (2019).
Zhang, Z. et al. Electrochemical deposition as a common route for fabricating single-atom catalysts. Nat. Commun. 11, 1215 (2020).
Zhao, L. et al. Cascade anchoring technique for normal mass manufacturing of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019).
Wei, S. et al. Direct remark of noble steel nanoparticles remodeling to thermally steady single atoms. Nat. Nanotechnol. 13, 856–861 (2018).
Yao, Y. et al. Excessive temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019).
Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).
Wang, L. et al. A sulfur-tethering synthesis technique towards high-loading atomically dispersed noble steel catalysts. Sci. Adv. 5, eaax6322 (2019).
Cheng, Y. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide discount. Adv. Mater. 30, 1706287 (2018).
Kunwar, D. et al. Stabilizing excessive steel loadings of thermally steady platinum single atoms on an industrial catalyst assist. ACS Catal. 9, 3978–3990 (2019).
Zhang, L. et al. Direct remark of dynamic bond evolution in single‐atom Pt/C3N4 catalysts. Angew. Chem. Int. Ed. 59, 6224–6229 (2020).
Li, H. et al. Synergetic interplay between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).
Avakyan, L. et al. Atomic construction of nickel phthalocyanine probed by X-ray absorption spectroscopy and density useful simulations. Choose. Spectrosc. 114, 347–352 (2013).
Kabir, S., Artyushkova, Okay., Serov, A., Kiefer, B. & Atanassov, P. Binding vitality shifts for nitrogen‐containing graphene‐primarily based electrocatalysts-experiments and DFT calculations. Surf. Interface Anal. 48, 293–300 (2016).
Jiang, Okay. et al. Remoted Ni single atoms in graphene nanosheets for high-performance CO2 discount. Vitality Environ. Sci. 11, 893–903 (2018).
Kim, H. et al. Identification of single-atom Ni web site energetic towards electrochemical CO2 conversion to CO. J. Am. Chem. Soc. 143, 925–933 (2021).
Kaiser, S. Okay. et al. Nanostructuring unlocks excessive efficiency of platinum single-atom catalysts for steady vinyl chloride manufacturing. Nat. Catal. 3, 376–385 (2020).
Du, Y. et al. XAFCA: a brand new XAFS beamline for catalysis analysis. J. Synchrotron Radiat. 22, 839–843 (2015).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758 (1999).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).
Henkelman, G. & Jónsson, H. A dimer technique for locating saddle factors on excessive dimensional potential surfaces utilizing solely first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).
[ad_2]