Regulating the manufacturing and organic operate of small extracellular vesicles: present methods, purposes and prospects | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y, Zheng Q, Li Y, Wang P, He X, Huang S. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46:D106–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Hu G, Drescher KM, Chen XM. Exosomal miRNAs: organic properties and therapeutic potential. Entrance Genet. 2012;3:56–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    File M, Silvente-Poirot S, Poirot M, Wakelam MJO. Extracellular vesicles: lipids as key parts of their biogenesis and capabilities. J Lipid Res. 2018;59:1316–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020;367:eaau6977.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medication. Theranostics. 2018;8:237–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Moller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in most cancers. Nat Rev Most cancers. 2020;20:697–709.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Witwer KW, Van Balkom BWM, Bruno S, Choo A, Dominici M, Gimona M, Hill AF, De Kleijn D, Koh M, Lai RC, Mitsialis SA, Ortiz LA, Rohde E, Asada T, Toh WS, Weiss DJ, Zheng L, Giebel B, Lim SK. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic purposes. J Extracell Vesicles. 2019;8:1609206.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borras FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gorecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzas EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Sofa Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstrom Ok, El Andaloussi S, Elie-Caille C, Erdbrugger U, Falcon-Perez JM, Fatima F, Fish JE, Flores-Bellver M, Forsonits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gamez-Valero A, Gardiner C, Gartner Ok, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gorgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, 2nd, Kornek M, Kosanovic MM, Kovacs AF, Kramer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lasser C, Laurent LC, Lavieu G, Lazaro-Ibanez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao Ok, Libregts SF, Ligeti E, Lim R, Lim SK, Line A, Linnemannstons Ok, Llorente A, Lombard CA, Lorenowicz MJ, Lorincz AM, Lotvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Jr., Meehan KL, Mertens I, Minciacchi VR, Moller A, Moller Jorgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-‘t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Ostergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saa P, Sahoo S, Salas-Huenuleo E, Sanchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schoyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba Ok, Siljander PR, Silva AM, Skowronek A, Snyder OL, 2nd, Soares RP, Sodar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms Ok, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen Ok, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Jr., Veit TD, Vella LJ, Velot E, Verweij FJ, Vestad B, Vinas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yanez-Mo M, Yin H, Yuana Y, Zappulli V, Zarubova J, Zekas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal data for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7:1535750.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    PubMed 

    Google Scholar
     

  • 10.

    Jadli AS, Ballasy N, Edalat P, Patel VB. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem. 2020;467:77–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and different extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Lee Y, El Andaloussi S, Wooden MJ. Exosomes and microvesicles: extracellular vesicles for genetic data switch and gene remedy. Hum Mol Genet. 2012;21:R125–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medication. Stem Cell Res Ther. 2018;9:63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Cai Y, Liu W, Lian L, Xu Y, Bai X, Xu S, Zhang J. Stroke therapy: is exosome remedy superior to stem cell remedy? Biochimie. 2020;179:190–204.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and supply autos throughout organic membranes: present views and future challenges. Acta Pharm Sin B. 2016;6:287–96.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Phinney DG, Pittenger MF. Concise evaluation: MSC-derived exosomes for cell-free remedy. Stem Cells. 2017;35:851–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Ma Z, Wang Y, Li H. Purposes of extracellular vesicles in tissue regeneration. Biomicrofluidics. 2020;14:011501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Yamashita T, Takahashi Y, Takakura Y. Risk of exosome-based therapeutics and challenges in manufacturing of exosomes eligible for therapeutic software. Biol Pharm Bull. 2018;41:835–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Evaluate of the isolation, characterization, organic operate, and multifarious therapeutic approaches of exosomes. Cells. 2019;8:307–42.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 20.

    Chen BY, Sung CW, Chen C, Cheng CM, Lin DP, Huang CT, Hsu MY. Advances in exosomes know-how. Clin Chim Acta. 2019;493:14–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Huang C, Neupane YR, Lim XC, Shekhani R, Czarny B, Wacker MG, Pastorin G, Wang JW. Extracellular vesicles in heart problems. Adv Clin Chem. 2021;103:47–95.

    PubMed 

    Google Scholar
     

  • 22.

    Zhai M, Zhu Y, Yang M, Mao C. Human mesenchymal stem cell derived exosomes improve cell-free bone regeneration by altering their miRNAs profiles. Adv Sci. 2020;7:2001334.

    CAS 

    Google Scholar
     

  • 23.

    Golchin A, Hosseinzadeh S, Ardeshirylajimi A. The exosomes launched from totally different cell varieties and their results in wound therapeutic. J Cell Biochem. 2018;119:5043–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Takasugi M. Rising roles of extracellular vesicles in mobile senescence and getting old. Growing older Cell. 2018;17:e12734.

    PubMed Central 

    Google Scholar
     

  • 25.

    Wei H, Chen Q, Lin L, Sha C, Li T, Liu Y, Yin X, Xu Y, Chen L, Gao W, Li Y, Zhu X. Regulation of exosome manufacturing and cargo sorting. Int J Biol Sci. 2021;17:163–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Li D, Zhang P, Yao X, Li H, Shen H, Li X, Wu J, Lu X. Exosomes derived from miR-133b-modified mesenchymal stem cells promote restoration after spinal wire harm. Entrance Neurosci. 2018;12:845.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG, Chopp M. MiR-133b promotes neural plasticity and purposeful restoration after therapy of stroke with multipotent mesenchymal stromal cells in rats by way of switch of exosome-enriched extracellular particles. Stem Cells. 2013;31:2737–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma development. Most cancers Lett. 2013;335:201–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Kojima R, Bojar D, Rizzi G, Hamri GC, El-Baba MD, Saxena P, Auslander S, Tan KR, Fussenegger M. Designer exosomes produced by implanted cells intracerebrally ship therapeutic cargo for Parkinson’s illness therapy. Nat Commun. 2018;9:1305–14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Hoshino D, Kirkbride KC, Costello Ok, Clark ES, Sinha S, Grega-Larson N, Tyska MJ, Weaver AM. Exosome secretion is enhanced by invadopodia and drives invasive habits. Cell Rep. 2013;5:1159–68.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Tamai Ok, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, Shiina M, Fukushima Ok, Hoshino T, Sano Ok, Ueno Y, Shimosegawa T, Sugamura Ok. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun. 2010;399:384–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G. Evaluation of ESCRT capabilities in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, van der Goot FG. Hijacking multivesicular our bodies permits long-term and exosome-mediated long-distance motion of anthrax toxin. Cell Rep. 2013;5:986–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular switch of MicroRNAs in residing cells. J Biol Chem. 2010;285:17442–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Strauss Ok, Goebel C, Runz H, Mobius W, Weiss S, Feussner I, Simons M, Schneider A. Exosome secretion ameliorates lysosomal storage of ldl cholesterol in Niemann-Decide kind C illness. J Biol Chem. 2010;285:26279–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Laulagnier Ok, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar D, Salles JP, Bonnerot C, Perret B, File M. PLD2 is enriched on exosomes and its exercise is correlated to the discharge of exosomes. FEBS Lett. 2004;572:11–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavik J, Machala M, Zimmermann P. Syntenin-ALIX exosome biogenesis and budding into multivesicular our bodies are managed by ARF6 and PLD2. Nat Commun. 2014;5:3477.

    PubMed 

    Google Scholar
     

  • 39.

    van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting throughout melanogenesis. Dev Cell. 2011;21:708–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome launch of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol. 2010;190:1079–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid F, Vazquez J, Yanez-Mo M. The intracellular interactome of tetraspanin-enriched microdomains reveals their operate as sorting machineries towards exosomes. J Biol Chem. 2013;288:11649–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zoller M. Cell floor tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Most cancers Res. 2010;70:1668–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Geminard C, De Gassart A, Blanc L, Vidal M. Degradation of AP2 throughout reticulocyte maturation enhances binding of hsc70 and Alix to a typical website on TFR for sorting into exosomes. Visitors. 2004;5:181–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S. Proteomic evaluation of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166:7309–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer Ok, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C. Rab27a and Rab27b management totally different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular our bodies in a calcium-dependent method. Visitors. 2005;6:131–43.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Savina A, Vidal M, Colombo MI. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci. 2002;115:2505–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal Ok, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells towards a pro-metastatic phenotype by MET. Nat Med. 2012;18:883–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Zheng Y, Campbell EC, Lucocq J, Riches A, Powis SJ. Monitoring the Rab27 related exosome pathway utilizing nanoparticle monitoring evaluation. Exp Cell Res. 2013;319:1706–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Thery C. Rab27a helps exosome-dependent and -independent mechanisms that modify the tumor microenvironment and might promote tumor development. Most cancers Res. 2012;72:4920–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, Zhang R, Wu Y, Gao S, Kang T. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 2021;31:157–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Gronborg M, Mobius W, Rhee J, Barr FA, Simons M. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189:223–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Mobius W, Goebbels S, Nave KA, Schneider A, Simons M, Klugmann M, Trotter J, Kramer-Albers EM. Neurotransmitter-triggered switch of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11:e1001604.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Rao SK, Huynh C, Proux-Gillardeaux V, Galli T, Andrews NW. Identification of SNAREs concerned in synaptotagmin VII-regulated lysosomal exocytosis. J Biol Chem. 2004;279:20471–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Puri N, Roche PA. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by totally different SNARE isoforms. Proc Natl Acad Sci USA. 2008;105:2580–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Tiwari N, Wang CC, Brochetta C, Ke G, Vita F, Qi Z, Rivera J, Soranzo MR, Zabucchi G, Hong W, Clean U. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways. Blood. 2008;111:3665–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Gross JC, Chaudhary V, Bartscherer Ok, Boutros M. Energetic Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14:1036–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff-Yoessle S, Diem M, Tak S, Lefebvre O, Schwab Y, Goetz JG, Labouesse M. RAL-1 controls multivesicular physique biogenesis and exosome secretion. J Cell Biol. 2015;211:27–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Koles Ok, Nunnari J, Korkut C, Barria R, Brewer C, Li Y, Leszyk J, Zhang B, Budnik V. Mechanism of evenness interrupted (Evi)-exosome launch at synaptic boutons. J Biol Chem. 2012;287:16820–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Alonso R, Mazzeo C, Merida I, Izquierdo M. A brand new position of diacylglycerol kinase alpha on the secretion of deadly exosomes bearing Fas ligand throughout activation-induced cell loss of life of T lymphocytes. Biochimie. 2007;89:213–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Fulda S, Gorman AM, Hori O, Samali A. Mobile stress responses: cell survival and cell loss of life. Int J Cell Biol. 2010;2010:214074.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Kucharzewska P, Belting M. Rising roles of extracellular vesicles within the adaptive response of tumour cells to microenvironmental stress. J Extracell Vesicles. 2013;2:20304.


    Google Scholar
     

  • 63.

    Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, Morgelin M, Bourseau-Guilmain E, Bengzon J, Belting M. Exosomes mirror the hypoxic standing of glioma cells and mediate hypoxia-dependent activation of vascular cells throughout tumor improvement. Proc Natl Acad Sci USA. 2013;110:7312–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome launch by breast most cancers cells. BMC Most cancers. 2012;12:421.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE, Selvendiran Ok. Hypoxia-induced exosomes contribute to a extra aggressive and chemoresistant ovarian most cancers phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene. 2018;37:3806–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S. Microenvironmental pH is a key issue for exosome site visitors in tumor cells. J Biol Chem. 2009;284:34211–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Ban JJ, Lee M, Im W, Kim M. Low pH will increase the yield of exosome isolation. Biochem Biophys Res Commun. 2015;461:76–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Cheng Y, Zeng Q, Han Q, Xia W. Impact of pH, temperature and freezing-thawing on amount modifications and mobile uptake of exosomes. Protein Cell. 2019;10:295–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Gong C, Zhang X, Shi M, Li F, Wang S, Wang Y, Wang Y, Wei W, Ma G. Tumor exosomes reprogrammed by low pH are environment friendly concentrating on autos for good drug supply and customized remedy in opposition to their homologous tumor. Adv Sci. 2021;8:2002787.

    CAS 

    Google Scholar
     

  • 70.

    Fan SJ, Kroeger B, Marie PP, Bridges EM, Mason JD, McCormick Ok, Zois CE, Sheldon H, Khalid Alham N, Johnson E, Ellis M, Stefana MI, Mendes CC, Wainwright SM, Cunningham C, Hamdy FC, Morris JF, Harris AL, Wilson C, Goberdhan DC. Glutamine deprivation alters the origin and performance of most cancers cell exosomes. EMBO J. 2020;39:e103009.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Wang P, Wang H, Huang Q, Peng C, Yao L, Chen H, Qiu Z, Wu Y, Wang L, Chen W. Exosomes from M1-polarized macrophages improve paclitaxel antitumor exercise by activating macrophages-mediated irritation. Theranostics. 2019;9:1714–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Hui WW, Hercik Ok, Belsare S, Alugubelly N, Clapp B, Rinaldi C, Edelmann MJ. Salmonella enterica serovar Typhimurium alters the extracellular proteome of macrophages and results in the manufacturing of proinflammatory exosomes. Infect Immun. 2018;86:e00386-e417.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, Hakami RM, Zadeh MA, Lepene B, Klase ZA, El-Hage N, Younger M, Iordanskiy S, Kashanchi F. Exosomes from HIV-1-infected cells stimulate manufacturing of pro-inflammatory cytokines by trans-activating response (TAR) RNA. J Biol Chem. 2016;291:1251–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, Zhao Y, Liu H, Fu X, Han W. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for decision of persistent irritation by way of exosome-shuttled let-7b. J Transl Med. 2015;13:308.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G. Stem cell-derived extracellular vesicles and immune-modulation. Entrance Cell Dev Biol. 2016;4:83.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Huang C, Luo WF, Ye YF, Lin L, Wang Z, Luo MH, Tune QD, He XP, Chen HW, Kong Y, Tang YK. Characterization of inflammatory factor-induced modifications in mesenchymal stem cell exosomes and sequencing evaluation of exosomal microRNAs. World J Stem Cells. 2019;11:859–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Grey WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME, Platt MO, Searles CD, Davis ME. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes utilizing programs biology. Circ Res. 2015;116:255–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Zhu J, Lu Ok, Zhang N, Zhao Y, Ma Q, Shen J, Lin Y, Xiang P, Tang Y, Hu X, Chen J, Zhu W, Webster KA, Wang J, Yu H. Myocardial reparative capabilities of exosomes from mesenchymal stem cells are enhanced by hypoxia therapy of the cells by way of transferring microRNA-210 in an nSMase2-dependent approach. Artif Cells Nanomed Biotechnol. 2018;46:1659–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, Xu L, Zhang HX, Qiu XT, Li CC, Wang KK, Shen H, Zhang GG, Bai YP. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac restore by miR-125b-mediated prevention of cell loss of life in myocardial infarction. Theranostics. 2018;8:6163–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Datta A, Kim H, McGee L, Johnson AE, Talwar S, Marugan J, Southall N, Hu X, Lal M, Mondal D, Ferrer M, Abdel-Mageed AB. Excessive-throughput screening recognized selective inhibitors of exosome biogenesis and secretion: a drug repurposing technique for superior most cancers. Sci Rep. 2018;8:8161.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Wang J, Bonacquisti EE, Brown AD, Nguyen J. Boosting the biogenesis and secretion of mesenchymal stem cell-derived exosomes. Cells. 2020;9:660–76.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 82.

    Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, Yan C, Xie X, Lin Z, Panayi AC, Mi B, Liu G. Exosomes derived from pioglitazone-pretreated MSCs speed up diabetic wound therapeutic by enhancing angiogenesis. J Nanobiotechnol. 2021;19:150.

    CAS 

    Google Scholar
     

  • 83.

    Ibrahim AGE, Li C, Rogers R, Fournier M, Li L, Vaturi SD, Antes T, Sanchez L, Akhmerov A, Moseley JJ, Tobin B, Rodriguez-Borlado L, Smith RR, Marban L, Marban E. Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories. Nat Biomed Eng. 2019;3:695–705.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Wu H, Zhou J, Zeng C, Wu D, Mu Z, Chen B, Xie Y, Ye Y, Liu J. Curcumin will increase exosomal TCF21 thus suppressing exosome-induced lung most cancers. Oncotarget. 2016;7:87081–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Kalani A, Kamat PK, Chaturvedi P, Tyagi SC, Tyagi N. Curcumin-primed exosomes mitigate endothelial cell dysfunction throughout hyperhomocysteinemia. Life Sci. 2014;107:1–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Gernapudi R, Yao Y, Zhang Y, Wolfson B, Roy S, Duru N, Eades G, Yang P, Zhou Q. Focusing on exosomes from preadipocytes inhibits preadipocyte to most cancers stem cell signaling in early-stage breast most cancers. Breast Most cancers Res Deal with. 2015;150:685–95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Wei Y, Li M, Cui S, Wang D, Zhang CY, Zen Ok, Li L. Shikonin inhibits the proliferation of human breast most cancers cells by lowering tumor-derived exosomes. Molecules. 2016;21:777.

    PubMed Central 

    Google Scholar
     

  • 88.

    Wang YY, Tang LQ, Wei W. Berberine attenuates podocytes harm brought on by exosomes derived from excessive glucose-induced mesangial cells by TGFbeta1-PI3K/AKT pathway. Eur J Pharmacol. 2018;824:185–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Xia X, Wang X, Zhang S, Zheng Y, Wang L, Xu Y, Dangle B, Solar Y, Lei L, Bai Y, Hu J. miR-31 shuttled by halofuginone-induced exosomes suppresses MFC-7 cell proliferation by modulating the HDAC2/cell cycle signaling axis. J Cell Physiol. 2019;234:18970–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Zhang J, Zhang HD, Yao YF, Zhong SL, Zhao JH, Tang JH. beta-elemene reverses chemoresistance of breast most cancers cells by lowering resistance transmission by way of exosomes. Cell Physiol Biochem. 2015;36:2274–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding WQ. Exosome-mediated microRNA signaling from breast most cancers cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Most cancers. 2015;14:133.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Ruan XF, Ju CW, Shen Y, Liu YT, Kim IM, Yu H, Weintraub N, Wang XL, Tang Y. Suxiao Jiuxin capsule promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacol Sin. 2018;39:569–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    McAndrews KM, Kalluri R. Mechanisms related to biogenesis of exosomes in most cancers. Mol Most cancers. 2019;18:52.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Jelonek Ok, Widlak P, Pietrowska M. The affect of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett. 2016;23:656–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Hasan M, Hama S, Kogure Ok. Low electrical therapy prompts rho GTPase by way of warmth shock protein 90 and protein kinase C for intracellular supply of siRNA. Sci Rep. 2019;9:4114.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Fukuta T, Nishikawa A, Kogure Ok. Low degree electrical energy will increase the secretion of extracellular vesicles from cultured cells. Biochem Biophys Rep. 2020;21:100713.

    PubMed 

    Google Scholar
     

  • 97.

    Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, Zhao Y, Zhao X, Wang X, Ma Y, Malkoc V, Chiang C, Deng W, Chen Y, Fu Y, Kwak KJ, Fan Y, Kang C, Yin C, Rhee J, Bertani P, Otero J, Lu W, Yun Ok, Lee AS, Jiang W, Teng L, Kim BYS, Lee LJ. Massive-scale era of purposeful mRNA-encapsulating exosomes by way of mobile nanoporation. Nat Biomed Eng. 2020;4:69–83.

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Shah N, Morsi Y, Manasseh R. From mechanical stimulation to organic pathways within the regulation of stem cell destiny. Cell Biochem Funct. 2014;32:309–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Wang YK, Chen CS. Cell adhesion and mechanical stimulation within the regulation of mesenchymal stem cell differentiation. J Cell Mol Med. 2013;17:823–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Wang Z, Maruyama Ok, Sakisaka Y, Suzuki S, Tada H, Suto M, Saito M, Yamada S, Nemoto E. Cyclic stretch drive induces periodontal ligament cells to secrete exosomes that suppress IL-1beta manufacturing by the inhibition of the NF-kappaB signaling pathway in macrophages. Entrance Immunol. 2019;10:1310.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Guo S, Debbi L, Zohar B, Samuel R, Arzi RS, Fried AI, Carmon T, Shevach D, Redenski I, Schlachet I, Sosnik A, Levenberg S. Stimulating extracellular vesicles manufacturing from engineered tissues by mechanical forces. Nano Lett. 2021;21:2497–504.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Liu Y, Bai L, Guo Ok, Jia Y, Zhang Ok, Liu Q, Wang P, Wang X. Centered ultrasound-augmented concentrating on supply of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic most cancers remedy. Theranostics. 2019;9:5261–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S, Li W. Focused exosome-encapsulated erastin induced ferroptosis in triple destructive breast most cancers cells. Most cancers Sci. 2019;110:3173–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Yang Q, Nanayakkara GK, Drummer C, Solar Y, Johnson C, Cueto R, Fu H, Shao Y, Wang L, Yang WY, Tang P, Liu LW, Ge S, Zhou XD, Khan M, Wang H, Yang X. Low-intensity ultrasound-induced anti-inflammatory results are mediated by a number of new mechanisms together with gene induction, immunosuppressor cell promotion, and enhancement of exosome biogenesis and docking. Entrance Physiol. 2017;8:818.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    de Lucas B, Perez LM, Bernal A, Galvez BG. Ultrasound remedy: experiences and views for regenerative medication. Genes. 2020;11:1086.

    PubMed Central 

    Google Scholar
     

  • 106.

    Liu DD, Ullah M, Concepcion W, Dahl JJ, Thakor AS. The position of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med. 2020;9:850–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Li X, Li X, Lin J, Solar X, Ding Q. Exosomes derived from low-intensity pulsed ultrasound-treated dendritic cells suppress tumor necrosis factor-induced endothelial irritation. J Ultrasound Med. 2019;38:2081–91.

    PubMed 

    Google Scholar
     

  • 108.

    Zeng Q, Hong S, Wang X, Cheng Y, Solar J, Xia W. Regulation of exosomes secretion by low-intensity pulsed ultrasound in lung most cancers cells. Exp Cell Res. 2019;383:111448.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Zhao ZX, Qu LJ, Shuang T, Wu SJ, Su YQ, Lu F, Wang DS, Chen BL, Hao Q. Low-intensity ultrasound radiation will increase exosome yield for environment friendly drug supply. J Drug Deliv Sci Technol. 2020;57:101713.

    CAS 

    Google Scholar
     

  • 110.

    Sheybani ND, Batts AJ, Mathew AS, Thim EA, Worth RJ. Centered ultrasound hyperthermia augments launch of glioma-derived extracellular vesicles with differential immunomodulatory capability. Theranostics. 2020;10:7436–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Ambattu LA, Ramesan S, Dekiwadia C, Hanssen E, Li H, Yeo LY. Excessive frequency acoustic cell stimulation promotes exosome era regulated by a calcium-dependent mechanism. Commun Biol. 2020;3:553–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Snehota M, Vachutka J, Ter Haar G, Dolezal L, Kolarova H. Therapeutic ultrasound experiments in vitro: evaluation of things influencing outcomes and reproducibility. Ultrasonics. 2020;107:106167.

    PubMed 

    Google Scholar
     

  • 113.

    Williams DF. Definitions in biomaterials. In: Proceedings of a Consensus Convention of the European Society for Biomaterials; Proceedings. Proc Natl Acad Sci USA. 1987;4:1–72.

  • 114.

    Qazi TH, Mooney DJ, Duda GN, Geissler S. Biomaterials that promote cell-cell interactions improve the paracrine operate of MSCs. Biomaterials. 2017;140:103–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for restore and regeneration of bone tissue. Acta Biomater. 2017;59:2–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Cai L, Dewi RE, Goldstone AB, Cohen JE, Steele AN, Woo YJ, Heilshorn SC. Regulating stem cell secretome utilizing injectable hydrogels with in situ community formation. Adv Healthc Mater. 2016;5:2758–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Su N, Gao PL, Wang Ok, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine operate of mesenchymal stem cells: a brand new dimension in cell-material interplay. Biomaterials. 2017;141:74–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine exercise. Circ Res. 2011;109:724–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Park DJ, Yun WS, Kim WC, Park JE, Lee SH, Ha S, Choi JS, Key J, Web optimization YJ. Enchancment of stem cell-derived exosome launch effectivity by surface-modified nanoparticles. J Nanobiotechnol. 2020;18:178.

    CAS 

    Google Scholar
     

  • 120.

    Zhu M, Tian X, Tune X, Li Y, Tian Y, Zhao Y, Nie G. Nanoparticle-induced exosomes goal antigen-presenting cells to provoke Th1-type immune activation. Small. 2012;8:2841–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H, Qiu G, Wu Z. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic subject: launch of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19:209.

    CAS 

    Google Scholar
     

  • 122.

    Shyong YJ, Chang KC, Lin FH. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug supply. Colloid Surf B-Biointerfaces. 2018;171:391–7.

    CAS 

    Google Scholar
     

  • 123.

    Zhang Z, Xu R, Yang Y, Liang C, Yu X, Liu Y, Wang T, Yu Y, Deng F. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to enhance osseointegration. J Nanobiotechnol. 2021;19:78.

    CAS 

    Google Scholar
     

  • 124.

    ISEV2020 Summary E-book. J Extracell Vesicles. 2020;9:1784511.


    Google Scholar
     

  • 125.

    Wu Z, He D, Li H. Bioglass enhances the manufacturing of exosomes and improves their functionality of selling vascularization. Bioact Mater. 2021;6:823–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rebe C, Ghiringhelli F. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive operate of mouse and human myeloid-derived suppressor cells. J Clin Make investments. 2010;120:457–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Milman N, Ginini L, Gil Z. Exosomes and their position in tumorigenesis and anticancer drug resistance. Drug Resist Replace. 2019;45:1–12.


    Google Scholar
     

  • 128.

    Sherif AY, Harisa GI, Alanazi FK, Youssof AME. Engineering of exosomes: steps in the direction of inexperienced manufacturing of drug supply system. Curr Drug Targets. 2019;20:1537–49.

    CAS 
    PubMed 

    Google Scholar
     

  • 129.

    Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sanchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes by binding to particular motifs. Nat Commun. 2013;4:2980.

    PubMed 

    Google Scholar
     

  • 130.

    Shi H, Xu X, Zhang B, Xu J, Pan Z, Gong A, Zhang X, Li R, Solar Y, Yan Y, Mao F, Qian H, Xu W. 3,3’-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical wire mesenchymal stem cells to reinforce wound therapeutic. Theranostics. 2017;7:1674–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Peng D, Reed-Maldonado AB, Zhou F, Tan Y, Yuan H, Banie L, Wang G, Tang Y, He L, Lin G, Lue TF. Exosome launched from Schwann cells could also be concerned in microenergy acoustic pulse-associated cavernous nerve regeneration. J Intercourse Med. 2020;17:1618–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Canfran-Duque A, Pastor O, Reina M, Lerma M, Cruz-Jentoft AJ, Lasuncion MA, Busto R. Curcumin mitigates the intracellular lipid deposit induced by antipsychotics in vitro. PLoS ONE. 2015;10:e0141829.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 133.

    Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, Fang J, Xu YW, Dong YR, Liu JR, Guo HD. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. 2018;32:654–68.

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, Marszalek JR, Maitra A, Yee C, Rezvani Ok, Shpall E, LeBleu VS, Kalluri R. Era and testing of clinical-grade exosomes for pancreatic most cancers. JCI Perception. 2018;3:e99263.

    PubMed Central 

    Google Scholar
     

  • 135.

    Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, Wollacott R, Sapp E, Dubuke ML, Li X, Shaffer SA, DiFiglia M, Wang Y, Aronin N, Khvorova A. Exosomes produced from 3D cultures of MSCs by tangential circulate filtration present larger yield and improved exercise. Mol Ther. 2018;26:2838–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Yan L, Wu X. Exosomes produced from 3D cultures of umbilical wire mesenchymal stem cells in a hollow-fiber bioreactor present improved osteochondral regeneration exercise. Cell Biol Toxicol. 2020;36:165–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 137.

    Phan J, Kumar P, Hao D, Gao Ok, Farmer D, Wang A. Engineering mesenchymal stem cells to enhance their exosome efficacy and yield for cell-free remedy. J Extracell Vesicles. 2018;7:1522236.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New applied sciences for evaluation of extracellular vesicles. Chem Rev. 2018;118:1917–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Fan J, Lee CS, Kim S, Chen C, Aghaloo T, Lee M. Era of small RNA-modulated exosome mimetics for bone regeneration. ACS Nano. 2020;14:11973–84.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 140.

    Lee JR, Park BW, Kim J, Choo YW, Kim HY, Yoon JK, Kim H, Hwang JW, Kang M, Kwon SP, Tune SY, Ko IO, Park JA, Ban Ok, Hyeon T, Park HJ, Kim BS. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac restore. Sci Adv. 2020;6:eaaz0952.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 141.

    Staufer O, Dietrich F, Rimal R, Schroter M, Fabritz S, Boehm H, Singh S, Moller M, Platzman I, Spatz JP. Backside-up meeting of biomedical related absolutely artificial extracellular vesicles. Sci Adv. 2021;7:eabg6666.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *