Quantum-coherent nanoscience | Nature Nanotechnology
[ad_1]
Kastner, M. A. Synthetic atoms. Phys. As we speak 46, 24–31 (1993).
Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals. Stable State Commun. 102, 165–173 (1997).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).
Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of digital states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).
Yang, Okay. et al. Coherent spin manipulation of particular person atoms on a floor. Science 366, 509–512 (2019). Experimental work on the coherent manipulation of particular person spins on a floor in scanning probe microscopy.
He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).
Ardavan, A. et al. Will spin-relaxation instances in molecular magnets allow quantum info processing? Phys. Rev. Lett. 98, 057201 (2007).
Dolde, F. et al. Excessive-fidelity spin entanglement utilizing optimum management. Nat. Commun. 5, 3371 (2014).
Dehollain, J. P. et al. Bell’s inequality violation with spins in silicon. Nat. Nanotechnol. 11, 242–246 (2016).
Nichol, J. M. et al. Excessive-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3, 3 (2017).
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Okay. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).
Chatterjee, A. et al. Semiconductor qubits in follow. Nat. Rev. Phys. 3, 157–177 (2021).
Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy-level splitting between two macroscopic quantum states of cost coherently superposed by Josephson coupling. Phys. Rev. Lett. 79, 2328 (1997).
Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scripta 76, 165 (1998).
Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent management of macroscopic quantum states in a single-Cooper-pair field. Nature 398, 786–788 (1999).
Zaretskey, F. V. et al. Decoherence in a pair of long-lived Cooper-pair bins. J. Appl. Phys. 114, 094305 (2013).
Rabl, P. et al. A quantum spin transducer based mostly on nanoelectromechanical resonator arrays. Nat. Phys. 6, 602–608 (2010).
Kurizki, G. et al. Quantum applied sciences with hybrid methods. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).
Elzerman, J. M. et al. Single-shot read-out of a person electron spin in a quantum dot. Nature 430, 431–435 (2004). The flexibility to carry out projective quantum measurement of a single electron spin by electrical means opened the door to the sensible use of spins in semiconductor quantum gadgets.
Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).
Koch, J. et al. Cost-insensitive qubit design derived from the Cooper pair field. Phys. Rev. A 76, 042319 (2007).
Krantz, P. et al. A quantum engineer’s information to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).
Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Remark of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).
Wu, Y., Wang, Y., Qin, X., Rong, X. & Du, J. A programmable two-qubit solid-state quantum processor below ambient circumstances. npj Quantum Inf. 5, 9 (2019).
Watson, T. F. et al. Atomically engineered electron spin lifetimes of 30 s in silicon. Sci. Adv. 3, e1602811 (2017).
Anderson, C. P. et al. Electrical and optical management of single spins built-in in scalable semiconductor gadgets. Science 366, 1225–1230 (2020).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).
Vandersypen, L. M. Okay. & Eriksson, M. A. Quantum computing with semiconductor spins. Phys. As we speak 72, 38–42 (2019).
Thiele, S. et al. Electrically pushed nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014). Quantum-coherent management of a person molecular spin in an digital gadget.
Malavolti, L. et al. Tunable spin–superconductor coupling of spin 1/2 vanadyl phthalocyanine molecules. Nano Lett. 18, 7955–7961 (2018).
Bayliss, S. L. et al. Optically addressable molecular spins for quantum info processing. Science 370, 1309–1312 (2020).
Baumann, S. et al. Electron paramagnetic resonance of particular person atoms on a floor. Science 350, 417–420 (2015).
Seifert, T. S. et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope pushed by a radio-frequency antenna at 4 Okay. Phys. Rev. Res. 2, 013032 (2020).
Yale, C. G. et al. All-optical management of a solid-state spin utilizing coherent darkish states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).
Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum applied sciences with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).
Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).
Eng, Okay. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).
Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).
Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015). Experimental demonstration of two-qubit logic operations in silicon, the identical platform used for classical nanoelectronics.
Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
Mills, A. R. et al. Shuttling a single cost throughout a one-dimensional array of silicon quantum dots. Nat. Commun. 10, 1063 (2019).
Xue, X. et al. Computing with spin qubits on the floor code error threshold. Preprint at https://arxiv.org/abs/2107.00628 (2021).
Takeda, Okay. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 16, 965–969 (2021).
Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
Saeedi, Okay. et al. Room-temperature quantum bit storage exceeding 39 minutes utilizing ionized donors in silicon-28. Science 342, 830–833 (2013).
Muhonen, J. T. et al. Storing quantum info for 30 seconds in a nanoelectronic gadget. Nat. Nanotechnol. 9, 986–991 (2014).
Mądzik, M. T. et al. Precision tomography of a three-qubit electron-nuclear quantum processor in silicon. Preprint at https://arxiv.org/abs/2106.03082 (2021).
Mądzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon gadget. Nat. Commun. 12, 181 (2020).
Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect facilities. Science 276, 2012–2014 (1997).
Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum reminiscence as much as one minute. Phys. Rev. X 9, 031045 (2019).
Myers, B. A. et al. Probing floor noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
Smith, J. M., Meynell, S. A., Bleszynski Jayich, A. C. & Meijer, J. Color centre technology in diamond for quantum applied sciences. Nanophotonics 8, 1889–1906 (2019).
Lado, J. L., Ferrón, A. & Fernández-Rossier, J. Change mechanism for electron paramagnetic resonance of particular person adatoms. Phys. Rev. B 96, 205420 (2017).
Willke, P. et al. Probing quantum coherence in single atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).
Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).
Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular digital spin qubit. ACS Cent. Sci. 1, 488–492 (2015).
Atzori, M. et al. Room-temperature quantum coherence and Rabi oscillations in vanadyl phthalocyanine: towards nultifunctional molecular spin qubits. J. Am. Chem. Soc. 138, 2154–2157 (2016).
Liu, J. et al. Quantum coherent spin-electric management in a molecular nanomagnet at clock transitions. Nat. Phys. https://doi.org/10.1038/s41567-021-01355-4 (2021).
Moreno-Pineda, E. & Wernsdorfer, W. Measuring molecular magnets for quantum applied sciences. Nat. Rev. Phys. 3, 645–659 (2021).
Zhou, Y., Kanoda, Okay. & Ng, T.-Okay. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Choi, D. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).
Tacchino, F., Chiesa, A., Carretta, S. & Gerace, D. Quantum computer systems as common quantum simulators: state‐of‐the‐artwork and views. Adv. Quantum Technol. 3, 1900052 (2020).
Salfi, J. et al. Quantum simulation of the Hubbard mannequin with dopant atoms in silicon. Nat. Commun. 7, 11342 (2016).
Yang, Okay. et al. Probing resonating valence bond states in synthetic quantum magnets. Nat. Commun. 12, 993 (2021).
Dehollain, J. P. et al. Nagaoka ferromagnetism noticed in a quantum dot plaquette. Nature 579, 528–533 (2020).
Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum info processing: a evaluate. Rep. Prog. Phys. 82, 016001 (2018).
Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the street forward. Science 362, eaam9288 (2018).
Wan, N. H. et al. Giant-scale integration of synthetic atoms in hybrid photonic circuits. Nature 583, 226–231 (2020). Demonstration of state-of-the-art photonic circuits constructed by inserting quantum microchips with diamond color centres on prime of aluminium nitride photonic waveguides.
Reiserer, A. & Gerhard Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).
Wada, O. Femtosecond all-optical gadgets for ultrafast communication and sign processing. N. J. Phys. 6, 183 (2004).
Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).
Senellart, P., Solomon, G. & White, A. Excessive-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
You, L. Superconducting nanowire single-photon detectors for quantum info. Nanophotonics 9, 2673 (2020).
Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).
Bhaskar, M. Okay. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).
D’Amico, I. et al. Nanoscale quantum optics. Riv. Nuovo Cim. 4, 153–195 (2019).
Aharonovich, I., Englund, D. & Toth, M. Stable-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).
Bathen, M. E. & Vines, L. Manipulating single-photon emission from level defects in diamond and silicon carbide. Adv. Quantum Technol. 4, 2100003 (2021).
Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).
Reithmaier, G. et al. On-chip technology, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).
Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).
Krauss, T. F. Why do we want sluggish gentle? Nat. Photon. 2, 448–450 (2008).
Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).
Mamin, H. J. & Rugar, D. Sub-attonewton pressure detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).
Weber, P. et al. Drive sensitivity of multilayer graphene optomechanical gadgets. Nat. Commun. 7, 12496 (2016).
Fogliano, F. et al. Ultrasensitive nano-optomechanical pressure sensor operated at dilution temperatures. Nat. Commun. 12, 4124 (2021).
Chaste, J. et al. A nanomechanical mass sensor with yoctogram decision. Nat. Nanotechnol. 7, 301–304 (2012).
Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance pressure microscopy. Nature 430, 329–332 (2004). Breakthrough experimental outcomes on measuring the dipolar magnetic pressure from a single electron spin.
Wollman, E. E., Lei, C. U., Weinstein, A. J. & Suh, J. Quantum squeezing of movement in a mechanical resonator. Science 349, 952–955 (2015).
Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).
Wu, M., Zeuthen, E., Balram, Okay. C. & Srinivasan, Okay. Microwave-to-optical transduction utilizing a mechanical supermode for coupling piezoelectric and optomechanical resonators. Phys. Rev. Appl. 13, 014027 (2020).
O’Connell, A. D. et al. Quantum floor state and single-phonon management of a mechanical resonator. Nature 464, 697–703 (2010). Management of mechanical movement right down to the final quantum of excitation in a nanostructured mechanical oscillator.
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum floor state. Nature 478, 89–92 (2011).
Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction restrict. Phys. Rev. Lett. 116, 063601 (2016).
Zwickl, B. M. et al. Prime quality mechanical and optical properties of economic silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).
Purdy, T. P., Yu, P.-L., Peterson, R. W., Kampel, N. S. & Rega, C. A. Sturdy optomechanical squeezing of sunshine. Phys. Rev. X 3, 031012 (2013).
Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators by way of comfortable clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).
Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).
Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Steady pressure and displacement measurement beneath the usual quantum restrict. Nat. Phys. 15, 745–749 (2019).
Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Sturdy spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 8, 165–169 (2013).
Karg, T. M. et al. Gentle-mediated robust coupling between a mechanical oscillator and atomic spins 1 meter aside. Science 369, 174–179 (2020).
Lee, D., Lee, Okay. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical evaluate: spins and mechanics in diamond. J. Decide. 19, 033001 (2017).
Xiang, Z., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with different quantum methods. Rev. Mod. Phys. 85, 623–653 (2013).
Robledo, L. et al. Excessive-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).
Blais, A., Huang, R. S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an structure for quantum computation. Phys. Rev. A 69, 062320 (2004).
Blais, A., Girvin, S. M. & Oliver, W. D. Quantum info processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).
Wallraff, A. et al. Sturdy coupling of a single photon to a superconducting qubit utilizing circuit quantum electrodynamics. Nature 431, 162–167 (2004). Demonstration of robust coupling between a microwave photon and a superconducting circuit, enabling the hybridization of two disparate quantum methods.
Paik, H. et al. Remark of excessive coherence in Josephson junction qubits measured in a three-dimensional circuit QED structure. Phys. Rev. Lett. 107, 240501 (2011).
Wang, J. I.-J. et al. Coherent management of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).
Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).
Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W. & Petta, J. R. Sturdy coupling of a single electron in silicon to a microwave photon. Science 355, 156–158 (2017).
Mi, X. et al. A coherent spin-photon interface in silicon. Nature 555, 559–603 (2018).
Samkharadze, N. et al. Sturdy spin-photon coupling in silicon. Science 359, 1123–1127 (2018). Refs. 117,118 reveal hybrid quantum nanoelectronic gadgets during which an electron spin coherently {couples} to a microwave photon by way of the electron’s cost.
Landig, A. J. et al. Digital-photon-mediated spin-qubit–transmon coupling. Nat. Commun. 10, 5037 (2019).
Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).
Rosenberg, D. et al. 3D integration and packaging for solid-state qubits. IEEE Microw. Magazine. 21, 72–86 (2020).
Rothemund, P. W. Okay. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Fittipaldi, M. et al. Electrical subject modulation of magnetic change in molecular helices. Nat. Mater. 18, 329–334 (2019).
Eigler, D. M. & Schweizer, E. Okay. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).
Wineland, D. J. Nobel lecture: superposition, entanglement, and elevating Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).
Dowling, J. P. & Milburn, Gerard J. Quantum know-how: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).
MacQuarrie, E. R. et al. Progress towards a capacitively mediated CNOT between two cost qubits in Si/SiGe. npj Quantum Inf. 6, 81 (2020).
Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).
Wilkinson, T. A. et al. Spin-selective AC Stark shifts in a charged quantum dot. Appl. Phys. Lett. 114, 133104 (2019).
Press, D. et al. Full quantum management of a single quantum dot spin utilizing ultrafast optical pulses. Nature 456, 218–221 (2008).
Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and management in diamond. Science 330, 1212–1215 (2010).
Tamarat, P. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. N. J. Phys. 10, 045004 (2008).
Zhong, M. et al. Optically addressable nuclear spins in a strong with a six-hour coherence time. Nature 517, 177–180 (2015).
[ad_2]