Quantum-coherent nanoscience | Nature Nanotechnology

[ad_1]

  • 1.

    Kastner, M. A. Synthetic atoms. Phys. As we speak 46, 24–31 (1993).

    CAS 

    Google Scholar
     

  • 2.

    Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals. Stable State Commun. 102, 165–173 (1997).

    CAS 

    Google Scholar
     

  • 3.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).


    Google Scholar
     

  • 4.

    MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    CAS 

    Google Scholar
     

  • 5.

    Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of digital states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).

    CAS 

    Google Scholar
     

  • 6.

    Yang, Okay. et al. Coherent spin manipulation of particular person atoms on a floor. Science 366, 509–512 (2019). Experimental work on the coherent manipulation of particular person spins on a floor in scanning probe microscopy.

    CAS 

    Google Scholar
     

  • 7.

    He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).

    CAS 

    Google Scholar
     

  • 8.

    Ardavan, A. et al. Will spin-relaxation instances in molecular magnets allow quantum info processing? Phys. Rev. Lett. 98, 057201 (2007).


    Google Scholar
     

  • 9.

    Dolde, F. et al. Excessive-fidelity spin entanglement utilizing optimum management. Nat. Commun. 5, 3371 (2014).


    Google Scholar
     

  • 10.

    Dehollain, J. P. et al. Bell’s inequality violation with spins in silicon. Nat. Nanotechnol. 11, 242–246 (2016).

    CAS 

    Google Scholar
     

  • 11.

    Nichol, J. M. et al. Excessive-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3, 3 (2017).


    Google Scholar
     

  • 12.

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Okay. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    CAS 

    Google Scholar
     

  • 13.

    Chatterjee, A. et al. Semiconductor qubits in follow. Nat. Rev. Phys. 3, 157–177 (2021).


    Google Scholar
     

  • 14.

    Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy-level splitting between two macroscopic quantum states of cost coherently superposed by Josephson coupling. Phys. Rev. Lett. 79, 2328 (1997).

    CAS 

    Google Scholar
     

  • 15.

    Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scripta 76, 165 (1998).


    Google Scholar
     

  • 16.

    Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent management of macroscopic quantum states in a single-Cooper-pair field. Nature 398, 786–788 (1999).

    CAS 

    Google Scholar
     

  • 17.

    Zaretskey, F. V. et al. Decoherence in a pair of long-lived Cooper-pair bins. J. Appl. Phys. 114, 094305 (2013).


    Google Scholar
     

  • 18.

    Rabl, P. et al. A quantum spin transducer based mostly on nanoelectromechanical resonator arrays. Nat. Phys. 6, 602–608 (2010).

    CAS 

    Google Scholar
     

  • 19.

    Kurizki, G. et al. Quantum applied sciences with hybrid methods. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    CAS 

    Google Scholar
     

  • 20.

    Elzerman, J. M. et al. Single-shot read-out of a person electron spin in a quantum dot. Nature 430, 431–435 (2004). The flexibility to carry out projective quantum measurement of a single electron spin by electrical means opened the door to the sensible use of spins in semiconductor quantum gadgets.

    CAS 

    Google Scholar
     

  • 21.

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    CAS 

    Google Scholar
     

  • 22.

    Koch, J. et al. Cost-insensitive qubit design derived from the Cooper pair field. Phys. Rev. A 76, 042319 (2007).


    Google Scholar
     

  • 23.

    Krantz, P. et al. A quantum engineer’s information to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).


    Google Scholar
     

  • 24.

    Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Remark of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    CAS 

    Google Scholar
     

  • 26.

    Wu, Y., Wang, Y., Qin, X., Rong, X. & Du, J. A programmable two-qubit solid-state quantum processor below ambient circumstances. npj Quantum Inf. 5, 9 (2019).


    Google Scholar
     

  • 27.

    Watson, T. F. et al. Atomically engineered electron spin lifetimes of 30 s in silicon. Sci. Adv. 3, e1602811 (2017).


    Google Scholar
     

  • 28.

    Anderson, C. P. et al. Electrical and optical management of single spins built-in in scalable semiconductor gadgets. Science 366, 1225–1230 (2020).


    Google Scholar
     

  • 29.

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).

    CAS 

    Google Scholar
     

  • 30.

    Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    CAS 

    Google Scholar
     

  • 31.

    Vandersypen, L. M. Okay. & Eriksson, M. A. Quantum computing with semiconductor spins. Phys. As we speak 72, 38–42 (2019).

    CAS 

    Google Scholar
     

  • 32.

    Thiele, S. et al. Electrically pushed nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014). Quantum-coherent management of a person molecular spin in an digital gadget.

    CAS 

    Google Scholar
     

  • 33.

    Malavolti, L. et al. Tunable spin–superconductor coupling of spin 1/2 vanadyl phthalocyanine molecules. Nano Lett. 18, 7955–7961 (2018).

    CAS 

    Google Scholar
     

  • 34.

    Bayliss, S. L. et al. Optically addressable molecular spins for quantum info processing. Science 370, 1309–1312 (2020).

    CAS 

    Google Scholar
     

  • 35.

    Baumann, S. et al. Electron paramagnetic resonance of particular person atoms on a floor. Science 350, 417–420 (2015).

    CAS 

    Google Scholar
     

  • 36.

    Seifert, T. S. et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope pushed by a radio-frequency antenna at 4 Okay. Phys. Rev. Res. 2, 013032 (2020).

    CAS 

    Google Scholar
     

  • 37.

    Yale, C. G. et al. All-optical management of a solid-state spin utilizing coherent darkish states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    CAS 

    Google Scholar
     

  • 38.

    Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum applied sciences with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    CAS 

    Google Scholar
     

  • 39.

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS 

    Google Scholar
     

  • 40.

    Eng, Okay. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).


    Google Scholar
     

  • 41.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    CAS 

    Google Scholar
     

  • 42.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015). Experimental demonstration of two-qubit logic operations in silicon, the identical platform used for classical nanoelectronics.

    CAS 

    Google Scholar
     

  • 43.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    CAS 

    Google Scholar
     

  • 44.

    Mills, A. R. et al. Shuttling a single cost throughout a one-dimensional array of silicon quantum dots. Nat. Commun. 10, 1063 (2019).

    CAS 

    Google Scholar
     

  • 45.

    Xue, X. et al. Computing with spin qubits on the floor code error threshold. Preprint at https://arxiv.org/abs/2107.00628 (2021).

  • 46.

    Takeda, Okay. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 16, 965–969 (2021).

    CAS 

    Google Scholar
     

  • 47.

    Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).

    CAS 

    Google Scholar
     

  • 48.

    Saeedi, Okay. et al. Room-temperature quantum bit storage exceeding 39 minutes utilizing ionized donors in silicon-28. Science 342, 830–833 (2013).

    CAS 

    Google Scholar
     

  • 49.

    Muhonen, J. T. et al. Storing quantum info for 30 seconds in a nanoelectronic gadget. Nat. Nanotechnol. 9, 986–991 (2014).

    CAS 

    Google Scholar
     

  • 50.

    Mądzik, M. T. et al. Precision tomography of a three-qubit electron-nuclear quantum processor in silicon. Preprint at https://arxiv.org/abs/2106.03082 (2021).

  • 51.

    Mądzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon gadget. Nat. Commun. 12, 181 (2020).


    Google Scholar
     

  • 52.

    Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect facilities. Science 276, 2012–2014 (1997).

    CAS 

    Google Scholar
     

  • 53.

    Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum reminiscence as much as one minute. Phys. Rev. X 9, 031045 (2019).

    CAS 

    Google Scholar
     

  • 54.

    Myers, B. A. et al. Probing floor noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    CAS 

    Google Scholar
     

  • 55.

    Smith, J. M., Meynell, S. A., Bleszynski Jayich, A. C. & Meijer, J. Color centre technology in diamond for quantum applied sciences. Nanophotonics 8, 1889–1906 (2019).

    CAS 

    Google Scholar
     

  • 56.

    Lado, J. L., Ferrón, A. & Fernández-Rossier, J. Change mechanism for electron paramagnetic resonance of particular person adatoms. Phys. Rev. B 96, 205420 (2017).


    Google Scholar
     

  • 57.

    Willke, P. et al. Probing quantum coherence in single atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).


    Google Scholar
     

  • 58.

    Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    CAS 

    Google Scholar
     

  • 59.

    Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular digital spin qubit. ACS Cent. Sci. 1, 488–492 (2015).

    CAS 

    Google Scholar
     

  • 60.

    Atzori, M. et al. Room-temperature quantum coherence and Rabi oscillations in vanadyl phthalocyanine: towards nultifunctional molecular spin qubits. J. Am. Chem. Soc. 138, 2154–2157 (2016).

    CAS 

    Google Scholar
     

  • 61.

    Liu, J. et al. Quantum coherent spin-electric management in a molecular nanomagnet at clock transitions. Nat. Phys. https://doi.org/10.1038/s41567-021-01355-4 (2021).

  • 62.

    Moreno-Pineda, E. & Wernsdorfer, W. Measuring molecular magnets for quantum applied sciences. Nat. Rev. Phys. 3, 645–659 (2021).

    CAS 

    Google Scholar
     

  • 63.

    Zhou, Y., Kanoda, Okay. & Ng, T.-Okay. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).


    Google Scholar
     

  • 64.

    Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    CAS 

    Google Scholar
     

  • 65.

    Choi, D. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).

    CAS 

    Google Scholar
     

  • 66.

    Tacchino, F., Chiesa, A., Carretta, S. & Gerace, D. Quantum computer systems as common quantum simulators: state‐of‐the‐artwork and views. Adv. Quantum Technol. 3, 1900052 (2020).


    Google Scholar
     

  • 67.

    Salfi, J. et al. Quantum simulation of the Hubbard mannequin with dopant atoms in silicon. Nat. Commun. 7, 11342 (2016).

    CAS 

    Google Scholar
     

  • 68.

    Yang, Okay. et al. Probing resonating valence bond states in synthetic quantum magnets. Nat. Commun. 12, 993 (2021).

    CAS 

    Google Scholar
     

  • 69.

    Dehollain, J. P. et al. Nagaoka ferromagnetism noticed in a quantum dot plaquette. Nature 579, 528–533 (2020).

    CAS 

    Google Scholar
     

  • 70.

    Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum info processing: a evaluate. Rep. Prog. Phys. 82, 016001 (2018).


    Google Scholar
     

  • 71.

    Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the street forward. Science 362, eaam9288 (2018).


    Google Scholar
     

  • 72.

    Wan, N. H. et al. Giant-scale integration of synthetic atoms in hybrid photonic circuits. Nature 583, 226–231 (2020). Demonstration of state-of-the-art photonic circuits constructed by inserting quantum microchips with diamond color centres on prime of aluminium nitride photonic waveguides.

    CAS 

    Google Scholar
     

  • 73.

    Reiserer, A. & Gerhard Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    CAS 

    Google Scholar
     

  • 74.

    Wada, O. Femtosecond all-optical gadgets for ultrafast communication and sign processing. N. J. Phys. 6, 183 (2004).


    Google Scholar
     

  • 75.

    Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).


    Google Scholar
     

  • 76.

    Senellart, P., Solomon, G. & White, A. Excessive-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS 

    Google Scholar
     

  • 77.

    You, L. Superconducting nanowire single-photon detectors for quantum info. Nanophotonics 9, 2673 (2020).

    CAS 

    Google Scholar
     

  • 78.

    Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    CAS 

    Google Scholar
     

  • 79.

    Bhaskar, M. Okay. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    CAS 

    Google Scholar
     

  • 80.

    D’Amico, I. et al. Nanoscale quantum optics. Riv. Nuovo Cim. 4, 153–195 (2019).


    Google Scholar
     

  • 81.

    Aharonovich, I., Englund, D. & Toth, M. Stable-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS 

    Google Scholar
     

  • 82.

    Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).


    Google Scholar
     

  • 83.

    Bathen, M. E. & Vines, L. Manipulating single-photon emission from level defects in diamond and silicon carbide. Adv. Quantum Technol. 4, 2100003 (2021).

  • 84.

    Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    CAS 

    Google Scholar
     

  • 85.

    Reithmaier, G. et al. On-chip technology, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).

    CAS 

    Google Scholar
     

  • 86.

    Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).

  • 87.

    Krauss, T. F. Why do we want sluggish gentle? Nat. Photon. 2, 448–450 (2008).

    CAS 

    Google Scholar
     

  • 88.

    Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).


    Google Scholar
     

  • 89.

    Mamin, H. J. & Rugar, D. Sub-attonewton pressure detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    CAS 

    Google Scholar
     

  • 90.

    Weber, P. et al. Drive sensitivity of multilayer graphene optomechanical gadgets. Nat. Commun. 7, 12496 (2016).

    CAS 

    Google Scholar
     

  • 91.

    Fogliano, F. et al. Ultrasensitive nano-optomechanical pressure sensor operated at dilution temperatures. Nat. Commun. 12, 4124 (2021).

    CAS 

    Google Scholar
     

  • 92.

    Chaste, J. et al. A nanomechanical mass sensor with yoctogram decision. Nat. Nanotechnol. 7, 301–304 (2012).

    CAS 

    Google Scholar
     

  • 93.

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance pressure microscopy. Nature 430, 329–332 (2004). Breakthrough experimental outcomes on measuring the dipolar magnetic pressure from a single electron spin.

    CAS 

    Google Scholar
     

  • 94.

    Wollman, E. E., Lei, C. U., Weinstein, A. J. & Suh, J. Quantum squeezing of movement in a mechanical resonator. Science 349, 952–955 (2015).

    CAS 

    Google Scholar
     

  • 95.

    Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).


    Google Scholar
     

  • 96.

    Wu, M., Zeuthen, E., Balram, Okay. C. & Srinivasan, Okay. Microwave-to-optical transduction utilizing a mechanical supermode for coupling piezoelectric and optomechanical resonators. Phys. Rev. Appl. 13, 014027 (2020).

    CAS 

    Google Scholar
     

  • 97.

    O’Connell, A. D. et al. Quantum floor state and single-phonon management of a mechanical resonator. Nature 464, 697–703 (2010). Management of mechanical movement right down to the final quantum of excitation in a nanostructured mechanical oscillator.


    Google Scholar
     

  • 98.

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum floor state. Nature 478, 89–92 (2011).

    CAS 

    Google Scholar
     

  • 99.

    Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction restrict. Phys. Rev. Lett. 116, 063601 (2016).

    CAS 

    Google Scholar
     

  • 100.

    Zwickl, B. M. et al. Prime quality mechanical and optical properties of economic silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).


    Google Scholar
     

  • 101.

    Purdy, T. P., Yu, P.-L., Peterson, R. W., Kampel, N. S. & Rega, C. A. Sturdy optomechanical squeezing of sunshine. Phys. Rev. X 3, 031012 (2013).

    CAS 

    Google Scholar
     

  • 102.

    Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators by way of comfortable clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).

    CAS 

    Google Scholar
     

  • 103.

    Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).

  • 104.

    Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Steady pressure and displacement measurement beneath the usual quantum restrict. Nat. Phys. 15, 745–749 (2019).

    CAS 

    Google Scholar
     

  • 105.

    Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Sturdy spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 8, 165–169 (2013).

    CAS 

    Google Scholar
     

  • 106.

    Karg, T. M. et al. Gentle-mediated robust coupling between a mechanical oscillator and atomic spins 1 meter aside. Science 369, 174–179 (2020).

    CAS 

    Google Scholar
     

  • 107.

    Lee, D., Lee, Okay. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical evaluate: spins and mechanics in diamond. J. Decide. 19, 033001 (2017).


    Google Scholar
     

  • 108.

    Xiang, Z., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with different quantum methods. Rev. Mod. Phys. 85, 623–653 (2013).

    CAS 

    Google Scholar
     

  • 109.

    Robledo, L. et al. Excessive-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    CAS 

    Google Scholar
     

  • 110.

    Blais, A., Huang, R. S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an structure for quantum computation. Phys. Rev. A 69, 062320 (2004).


    Google Scholar
     

  • 111.

    Blais, A., Girvin, S. M. & Oliver, W. D. Quantum info processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).

    CAS 

    Google Scholar
     

  • 112.

    Wallraff, A. et al. Sturdy coupling of a single photon to a superconducting qubit utilizing circuit quantum electrodynamics. Nature 431, 162–167 (2004). Demonstration of robust coupling between a microwave photon and a superconducting circuit, enabling the hybridization of two disparate quantum methods.

    CAS 

    Google Scholar
     

  • 113.

    Paik, H. et al. Remark of excessive coherence in Josephson junction qubits measured in a three-dimensional circuit QED structure. Phys. Rev. Lett. 107, 240501 (2011).


    Google Scholar
     

  • 114.

    Wang, J. I.-J. et al. Coherent management of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    CAS 

    Google Scholar
     

  • 115.

    Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    CAS 

    Google Scholar
     

  • 116.

    Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W. & Petta, J. R. Sturdy coupling of a single electron in silicon to a microwave photon. Science 355, 156–158 (2017).

    CAS 

    Google Scholar
     

  • 117.

    Mi, X. et al. A coherent spin-photon interface in silicon. Nature 555, 559–603 (2018).


    Google Scholar
     

  • 118.

    Samkharadze, N. et al. Sturdy spin-photon coupling in silicon. Science 359, 1123–1127 (2018). Refs. 117,118 reveal hybrid quantum nanoelectronic gadgets during which an electron spin coherently {couples} to a microwave photon by way of the electron’s cost.

    CAS 

    Google Scholar
     

  • 119.

    Landig, A. J. et al. Digital-photon-mediated spin-qubit–transmon coupling. Nat. Commun. 10, 5037 (2019).

    CAS 

    Google Scholar
     

  • 120.

    Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).

    CAS 

    Google Scholar
     

  • 121.

    Rosenberg, D. et al. 3D integration and packaging for solid-state qubits. IEEE Microw. Magazine. 21, 72–86 (2020).


    Google Scholar
     

  • 122.

    Rothemund, P. W. Okay. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS 

    Google Scholar
     

  • 123.

    Fittipaldi, M. et al. Electrical subject modulation of magnetic change in molecular helices. Nat. Mater. 18, 329–334 (2019).

    CAS 

    Google Scholar
     

  • 124.

    Eigler, D. M. & Schweizer, E. Okay. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    CAS 

    Google Scholar
     

  • 125.

    Wineland, D. J. Nobel lecture: superposition, entanglement, and elevating Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).

    CAS 

    Google Scholar
     

  • 126.

    Dowling, J. P. & Milburn, Gerard J. Quantum know-how: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).


    Google Scholar
     

  • 127.

    MacQuarrie, E. R. et al. Progress towards a capacitively mediated CNOT between two cost qubits in Si/SiGe. npj Quantum Inf. 6, 81 (2020).


    Google Scholar
     

  • 128.

    Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).

    CAS 

    Google Scholar
     

  • 129.

    Wilkinson, T. A. et al. Spin-selective AC Stark shifts in a charged quantum dot. Appl. Phys. Lett. 114, 133104 (2019).


    Google Scholar
     

  • 130.

    Press, D. et al. Full quantum management of a single quantum dot spin utilizing ultrafast optical pulses. Nature 456, 218–221 (2008).

    CAS 

    Google Scholar
     

  • 131.

    Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and management in diamond. Science 330, 1212–1215 (2010).

    CAS 

    Google Scholar
     

  • 132.

    Tamarat, P. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. N. J. Phys. 10, 045004 (2008).


    Google Scholar
     

  • 133.

    Zhong, M. et al. Optically addressable nuclear spins in a strong with a six-hour coherence time. Nature 517, 177–180 (2015).

    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *