NIR-II emissive AIEgen photosensitizers allow ultrasensitive imaging-guided surgical procedure and phototherapy to completely inhibit orthotopic hepatic tumors | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2021;71(3):209–49.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Bruix J, Reig M, Sherman M. Proof-based prognosis, staging, and therapy of sufferers with hepatocellular carcinoma. Gastroenterology. 2016;150(4):835–53.

    PubMed 

    Google Scholar
     

  • 3.

    Kulik L, Heimbach JK, Zaiem F, Almasri J, Prokop LJ, Wang Z, Murad MH, Mohammed Okay. Therapies for sufferers with hepatocellular carcinoma awaiting liver transplantation: a scientific evaluate and meta-analysis. Hepatology. 2018;67(1):381–400.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, Xie Y, Xu C, Zhang F. NIR-II nanoprobes in-vivo meeting to enhance image-guided surgical procedure for metastatic ovarian most cancers. Nat Commun. 2018;9(1):2898.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Zhan Y, Ling S, Huang H, Zhang Y, Chen G, Huang S, Li C, Guo W, Wang Q. Fast unperturbed-tissue evaluation for intraoperative most cancers prognosis utilizing an enzyme-activated NIR-II nanoprobe. Angew Chem Int Ed. 2021;133(5):2669–74.


    Google Scholar
     

  • 6.

    Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Solar X, Shi X, Li C. First-in-human liver-tumour surgical procedure guided by multispectral fluorescence imaging within the seen and near-infrared-I/II home windows. Nat Biomed Eng. 2020;4(3):259–71.

    PubMed 

    Google Scholar
     

  • 7.

    Novotny HR, Alvis DL. A way of photographing fluorescence in circulating blood within the human retina. Circulation. 1961;24(1):82–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Hong G, Antaris AL, Dai H. Close to-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1(1):0010.

    CAS 

    Google Scholar
     

  • 9.

    Younis MR, Wang C, An R, Wang S, Younis MA, Li Z-Q, Wang Y, Ihsan A, Ye D, Xia X-H. Low energy single laser activated synergistic most cancers phototherapy utilizing photosensitizer functionalized twin plasmonic photothermal nanoagents. ACS Nano. 2019;13(2):2544–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Li X, Lovell JF, Yoon J, Chen X. Medical growth and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17(11):657–74.

    PubMed 

    Google Scholar
     

  • 11.

    Zheng J, Liu Y, Track F. A nitroreductase-activatable near-infrared theranostic photosensitizer for photodynamic remedy underneath gentle hypoxia. Chem Commun. 2020;56(43):5819–22.

    CAS 

    Google Scholar
     

  • 12.

    Li T, Liu L, Xu P. Multifunctional nanotheranostic agent for NIR-II imaging-guided synergetic photothermal/photodynamic remedy. Adv Ther. 2021;4(3):2000240.

    CAS 

    Google Scholar
     

  • 13.

    Zhao J, Yan Okay, Xu G. An Iridium (III) advanced bearing a donor–acceptor–donor kind ligand for NIR-triggered twin phototherapy. Adv Funct Mater. 2021;31(11):2008325.

    CAS 

    Google Scholar
     

  • 14.

    Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem Commun. 2001;18:1740–1.


    Google Scholar
     

  • 15.

    Gao S, Wei G, Zhang S, Zheng B, Xu J, Chen G, Li M, Track S, Fu W, Xiao Z. Albumin tailoring fluorescence and photothermal conversion impact of near-infrared-II fluorophore with aggregation-induced emission traits. Nat Commun. 2019;10(1):2206.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Deng G, Peng X, Solar Z, Zheng W, Yu J, Du L, Chen H, Gong P, Zhang P, Cai L. Pure-killer-cell-inspired nanorobots with aggregation-induced emission traits for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano. 2020;14(9):11452–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Alifu N, Zebibula A, Qi J, Zhang H, Solar C, Yu X, Xue D, Lam JW, Li G, Qian J. Single-molecular near-infrared-II theranostic methods: ultrastable aggregation-induced emission nanoparticles for long-term tracing and environment friendly photothermal remedy. ACS Nano. 2018;12(11):11282–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Li Y, Cai Z, Liu S, Zhang H, Wong ST, Lam JW, Kwok RT, Qian J, Tang BZ. Design of AIEgens for near-infrared IIb imaging by way of structural modulation at molecular and morphological ranges. Nat Commun. 2020;11(1):1255.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Gao S, Yu S, Zhang Y. Molecular engineering of near-infrared-II photosensitizers with steric-hindrance impact for image-guided most cancers photodynamic remedy. Adv Funct Mater. 2021;31(14):2008356.

    CAS 

    Google Scholar
     

  • 20.

    Zhang L, Xue S, Ren F. An atherosclerotic plaque-targeted single-chain antibody for MR/NIR-II imaging of atherosclerosis and anti-atherosclerosis remedy. J Nanobiotechnol. 2021;19:296.


    Google Scholar
     

  • 21.

    Smith AM, Mancini MC, Nie S. Second window for in vivo imaging. Nat Nanotechnol. 2009;4(11):710–1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Haque A, Faizi MSH, Fairly JA, Khan MS. Subsequent technology NIR fluorophores for tumor imaging and fluorescence-guided surgical procedure: a evaluate. Bioorg Med Chem. 2017;25(7):2017–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Zhang N, Lu C, Chen M. Current advances in near-infrared II imaging know-how for organic detection. J Nanobiotechnol. 2021;19:132.


    Google Scholar
     

  • 24.

    Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging utilizing near-infrared II fluorescence. Nat Med. 2012;18(12):1841–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    He S, Track J, Qu J, Cheng Z. Essential breakthrough of second near-infrared organic window fluorophores: design and synthesis towards multimodal imaging and theranostics. Chem Soc Rev. 2018;47(12):4258–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI. Via-skull fluorescence imaging of the mind in a brand new near-infrared window. Nat Photon. 2014;8(9):723–30.

    CAS 

    Google Scholar
     

  • 27.

    Xu P, Hu L, Yu C. Unsymmetrical cyanine dye through in vivo hitchhiking endogenous albumin affords high-performance NIR-II/photoacoustic imaging and photothermal remedy. J Nanobiotechnol. 2021;19:334.


    Google Scholar
     

  • 28.

    Guo B, Chen J, Chen N. Excessive-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures utilizing conjugated polymer nanoparticles as distinction agent. Adv Mater. 2019;31(25):1808355.


    Google Scholar
     

  • 29.

    Naczynski D, Tan M, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C, Riman R, Moghe P. Uncommon-earth-doped organic composites as in vivo shortwave infrared reporters. Nat Commun. 2013;4(1):2199.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Franke D, Harris DK, Chen O, Bruns OT, Carr JA, Wilson MW, Bawendi MG. Steady injection synthesis of indium arsenide quantum dots emissive within the short-wavelength infrared. Nat Commun. 2016;7(1):12759.


    Google Scholar
     

  • 31.

    Antaris AL, Robinson JT, Yaghi OK, Hong G, Diao S, Luong R, Dai H. Extremely-low doses of chirality sorted (6, 5) carbon nanotubes for simultaneous tumor imaging and photothermal remedy. ACS Nano. 2013;7(4):3644–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Guo B, Feng Z, Hu D. Exact deciphering of mind vasculatures and microscopic tumors with twin NIR-II fluorescence and photoacoustic imaging. Adv Mater. 2019;31(30):1902504.


    Google Scholar
     

  • 33.

    Guo B, Sheng Z, Hu D. Via scalp and cranium NIR-II photothermal remedy of deep orthotopic mind tumors with exact photoacoustic imaging steerage. Adv Mater. 2018;30(35):1802591.


    Google Scholar
     

  • 34.

    Yang Q, Ma H, Liang Y, Dai H. Rational design of excessive brightness NIR-II natural dyes with SDADS construction. Acc Mater Res. 2021;2(3):170–83.

    CAS 

    Google Scholar
     

  • 35.

    Lei Z, Zhang F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew Chem Int Ed. 2021;30(133):16430–44.


    Google Scholar
     

  • 36.

    Ren TB, Wang ZY, Xiang Z, Lu P, Lai HH, Yuan L, Zhang XB, Tan W. A normal technique for growth of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging. Angew Chem Int Ed. 2021;133(2):813–8.


    Google Scholar
     

  • 37.

    Liu S, Li Y, Kwok RT, Lam JW, Tang BZ. Structural and course of controls of AIEgens for NIR-II theranostics. Chem Sci. 2021;12(10):3427–36.

    CAS 

    Google Scholar
     

  • 38.

    Zhang Q, Yu P, Fan Y, Solar C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Vibrant and steady NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging. Angew Chem Int Ed. 2021;133(8):4013–9.


    Google Scholar
     

  • 39.

    Zheng Y, Li Q, Wu J, Luo Z, Zhou W, Li A, Chen Y, Rouzi T, Tian T, Zhou H. All-in-one mitochondria-targeted NIR-II fluorophores for most cancers remedy and imaging. Chem Sci. 2021;12(5):1843–50.

    CAS 

    Google Scholar
     

  • 40.

    Su Y, Yu B, Wang S, Cong H, Shen Y. NIR-II bioimaging of small natural molecule. Biomaterials. 2021;271:120717.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Solar C, Li B, Zhao M, Wang S, Lei Z, Lu L, Zhang H, Feng L, Dou C, Yin D. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging past 1500 nm. J Am Chem Soc. 2019;141(49):19221–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Duan Y, Liu B. Current advances of optical imaging within the second near-infrared window. Adv Mater. 2018;30(47):1802394.


    Google Scholar
     

  • 43.

    Wang Y, Chen M, Alifu N, Li S, Qin W, Qin A, Tang BZ, Qian J. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse. ACS Nano. 2017;11(10):10452–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Shi H, Liu J, Geng J, Tang BZ, Liu B. Particular detection of integrin αvβ3 by light-up bioprobe with aggregation-induced emission traits. J Am Chem Soc. 2012;134(23):9569–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Fortunate SS, Soo KC, Zhang Y. Nanoparticles in photodynamic remedy. Chem Rev. 2015;115(4):1990–2042.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Hu W, He T, Zhao H, Tao H, Chen R, Jin L, Li J, Fan Q, Huang W, Baev A. Stimuli-responsive reversible switching of intersystem crossing in pure natural materials for good photodynamic remedy. Angew Chem Int Ed. 2019;58(32):11105–11.

    CAS 

    Google Scholar
     

  • 47.

    Li J, Huang J, Ao Y, Li S, Miao Y, Yu Z, Zhu L, Lan X, Zhu Y, Zhang Y. Synergizing upconversion nanophotosensitizers with hyperbaric oxygen to rework the extracellular matrix for enhanced photodynamic most cancers remedy. ACS Appl Mater Interfaces. 2018;10(27):22985–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Xu W, Wang D, Tang BZ. NIR-II AIEgens: a win-win integration in direction of bioapplications. Angew Chem Int Ed. 2021;133(14):7552–63.


    Google Scholar
     

  • 49.

    Shinn J, Lee S, Lee HK, Ahn J, Lee SA, Lee S, Lee Y. Current progress in growth and functions of second near-infrared (NIR-II) nanoprobes. Arch Pharm Res. 2021;44:165–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Natural dye primarily based nanoparticles for most cancers phototheranostics. Small. 2018;14(25):1704247.


    Google Scholar
     

  • 51.

    Liu W, Xiang H, Tan M, Chen Q, Jiang Q, Yang L, Cao Y, Wang Z, Ran H, Chen Y. Nanomedicine permits drug-potency activation with tumor sensitivity and hyperthermia synergy within the second near-infrared biowindow. ACS Nano. 2021;15(4):6457–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Zhu W, Kang M, Wu Q, Zhang Z, Wu Y, Li C, Li Okay, Wang L, Wang D, Tang BZ. Zwitterionic AIEgens: rational molecular design for NIR-II fluorescence imaging-guided synergistic phototherapy. Adv Funct Mater. 2021;31(3):2007026.

    CAS 

    Google Scholar
     

  • 53.

    Gao S, Yu S, Zhang Y, Wu A, Zhang S, Wei G, Wang H, Xiao Z, Lu W. Molecular engineering of near-infrared-II photosensitizers with steric-hindrance impact for image-guided most cancers photodynamic remedy. Adv Funct Mater. 2021;31(14):2008356.

    CAS 

    Google Scholar
     

  • 54.

    Hu X, Chen Z, Jin AJ, Yang Z, Gan D, Wu A, Ao H, Huang W, Fan Q. Rational design of all-organic nanoplatform for extremely environment friendly MR/NIR-II imaging-guided most cancers phototheranostics. Small. 2021;17(12):2007566.

    CAS 

    Google Scholar
     

  • 55.

    Sheng Z, Guo B, Hu D. Vibrant aggregation-induced-emission dots for focused synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic mind tumors. Adv Mater. 2018;30(29):1800766.


    Google Scholar
     

  • 56.

    Yu W, Guo B, Zhang H. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots. Sci Bull. 2019;64(6):410–6.

    CAS 

    Google Scholar
     

  • 57.

    Raza A, Sood GK. Hepatocellular carcinoma evaluate: present therapy, and evidence-based medication. World J Gastroenterol. 2014;20(15):4115–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Zhong J-H, Lu S-D, Wang Y-Y, Ma L, Li L-Q. Intermediate-stage HCC—upfront resection might be possible. Nat Rev Clin Oncol. 2015;12(5):25850549.


    Google Scholar
     

  • 59.

    Lin C-C, Cheng Y-T, Lin S-M. The effectiveness of a number of electrode radiofrequency ablation in sufferers with hepatocellular carcinoma with lesions greater than 3 cm in measurement and barcelona clinic liver most cancers stage A to B2. Liver Most cancers. 2016;5(1):8–20.

    PubMed 

    Google Scholar
     

  • 60.

    Liau KH, Ruo L, Shia J, Padela A, Gonen M, Jarnagin WR, Fong Y, D’Angelica MI, Blumgart LH, DeMatteo RP. End result of partial hepatectomy for giant (> 10 cm) hepatocellular carcinoma. Most cancers. 2005;104(9):1948–55.

    PubMed 

    Google Scholar
     

  • 61.

    Li S, Yin C, Wang R, Fan Q, Wu W, Jiang X. Second near-infrared aggregation-induced emission fluorophores with phenothiazine derivatives because the donor and 6, 7-diphenyl-[1, 2, 5] thiadiazolo [3, 4-g] quinoxaline because the acceptor for in vivo imaging. ACS Appl Mater Interfaces. 2020;12(18):20281–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Feng G, Liu B. Aggregation-induced emission (AIE) dots: rising theranostic nanolights. Acc Chem Res. 2018;51(6):1404–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Gu B, Yong KT, Liu B. Methods to beat the constraints of aiegens in biomedical functions. Small Strategies. 2018;2(9):1700392.


    Google Scholar
     

  • 64.

    Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett. 2010;1(16):2445–50.

    CAS 

    Google Scholar
     

  • 65.

    Crawford T, Moshnikova A, Roles S, Weerakkody D, DuPont M, Carter LM, Shen J, Engelman DM, Lewis JS, Andreev OA. pHLIP ICG for delineation of tumors and blood movement throughout fluorescence-guided surgical procedure. Sci Rep. 2020;10(1):18356.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Wang C, Wu B, Wu Y, Track X, Zhang S, Liu Z. Camouflaging nanoparticles with mind metastatic tumor cell membranes: a brand new technique to traverse blood–mind barrier for imaging and remedy of mind tumors. Adv Funct Mater. 2020;30(14):1909369.

    CAS 

    Google Scholar
     

  • 67.

    Shi T, Solar W, Qin R, Li D, Feng Y, Chen L, Liu G, Chen X, Chen H. X-ray-induced persistent luminescence promotes ultrasensitive imaging and efficient inhibition of orthotopic hepatic tumors. Adv Funct Mater. 2020;30(24):2001166.

    CAS 

    Google Scholar
     

  • 68.

    Andreou C, Neuschmelting V, Tschaharganeh D-F, Huang C-H, Oseledchyk A, Iacono P, Karabeber H, Colen RR, Mannelli L, Lowe SW. Imaging of liver tumors utilizing surface-enhanced Raman scattering nanoparticles. ACS Nano. 2016;10(5):5015–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Colby AH, Berry SM, Moran AM, Pasion KA, Liu R, Colson YL, Ruiz-Opazo N, Grinstaff MW, Herrera VL. Extremely particular and delicate fluorescent nanoprobes for image-guided resection of sub-millimeter peritoneal tumors. ACS Nano. 2017;11(2):1466–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Yang L, Xu J, Ou D, Wu W, Zeng Z. Hepatectomy for large hepatocellular carcinoma: single institute’s expertise. World J Surg. 2013;37(9):2189–96.

    PubMed 

    Google Scholar
     

  • 71.

    Tsai T-J, Chau G-Y, Lui W-Y, Tsay S-H, King Okay-L, Loong C-C, Hsia C-Y, Wu C-W. Medical significance of microscopic tumor venous invasion in sufferers with resectable hepatocellular carcinoma. Surgical procedure. 2000;127(6):603–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Romero D. Mixture set to remodel HCC remedy. Nat Rev Clin Oncol. 2020;17(7):389.

    PubMed 

    Google Scholar
     

  • 73.

    Luo J, Peng Z-W, Guo R-P, Zhang Y-Q, Li J-Q, Chen M-S, Shi M. Hepatic resection versus transarterial lipiodol chemoembolization because the preliminary therapy for giant, a number of, and resectable hepatocellular carcinomas: a potential nonrandomized evaluation. Radiology. 2011;259(1):286–95.

    PubMed 

    Google Scholar
     

  • 74.

    Renne SL, Sarcognato S, Sacchi D, Guido M, Roncalli M, Terracciano L, Di Tommaso L. Hepatocellular carcinoma: a medical and pathological overview. Pathologica. 2021;113(3):203–17.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Parikh ND, Cuneo Okay, Mendiratta-Lala M. Radiation therapies for the therapy of hepatocellular carcinoma. Clin Liver Dis. 2021;17(5):341–6.


    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *