Nanoparticle mobile internalization will not be required for RNA supply to mature plant leaves
[ad_1]
Liu, Y. et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and sturdy insect resistance in rice. Nat. Biotechnol. 33, 301–305 (2015).
Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. Excessive-efficiency TALEN-based gene enhancing produces disease-resistant rice. Nat. Biotechnol. 30, 390–392 (2012).
Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J. & Schroeder, A. Therapeutic nanoparticles penetrate leaves and ship vitamins to agricultural crops. Sci. Rep. 8, 7589 (2018).
Torney, F., Trewyn, B. G., Lin, V. S. Y. & Wang, Ok. Mesoporous silica nanoparticles ship DNA and chemical substances into vegetation. Nat. Nanotechnol. 2, 295–300 (2007).
Demirer, G. S. et al. Excessive facet ratio nanomaterials allow supply of useful genetic materials with out DNA integration in mature vegetation. Nat. Nanotechnol. 14, 456–464 (2019).
Kwak, S.-Y. et al. Chloroplast-selective gene supply and expression in planta utilizing chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).
Mitter, N. et al. Clay nanosheets for topical supply of RNAi for sustained safety towards plant viruses. Nat. Crops 3, 16207 (2017).
Demirer, G. S. et al. Carbon nanocarriers ship siRNA to intact plant cells for environment friendly gene knockdown. Sci. Adv. 6, eaaz0495 (2020).
Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature vegetation. Proc. Natl Acad. Sci. USA 116, 7543 (2019).
Lei, W.-X. et al. Building of gold-siRNANPR1 nanoparticles for efficient and fast silencing of NPR1 in Arabidopsis thaliana. RSC Adv. 10, 19300–19308 (2020).
Zhang, H. et al. Gold-nanocluster-mediated supply of siRNA to intact plant cells for environment friendly gene knockdown. Nano Lett. https://doi.org/10.1021/acs.nanolett.1c01792 (2021).
Martin-Ortigosa, S. et al. Mesoporous silica nanoparticle-mediated intracellular Cre protein supply for maize genome enhancing through loxP website excision. Plant Physiol. 164, 537–547 (2014).
Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).
Bao, W., Wang, J., Wang, Q., O’Hare, D. & Wan, Y. Layered double hydroxide nanotransporter for molecule supply to intact plant cells. Sci. Rep. 6, 26738 (2016).
Avellan, A. et al. Nanoparticle measurement and coating chemistry management foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).
Spielman-Solar, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).
Zhang, S., Gao, H. & Bao, G. Bodily rules of nanoparticle mobile endocytosis. ACS Nano 9, 8655–8671 (2015).
Herd, H. et al. Nanoparticle geometry and floor orientation affect mode of mobile uptake. ACS Nano 7, 1961–1973 (2013).
Xie, X., Liao, J., Shao, X., Li, Q. & Lin, Y. The impact of form on mobile uptake of gold nanoparticles within the types of stars, rods, and triangles. Sci. Rep. 7, 3827 (2017).
Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Figuring out the dimensions and form dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).
Yi, X., Shi, X. & Gao, H. A common legislation for cell uptake of one-dimensional nanomaterials. Nano Lett. 14, 1049–1055 (2014).
Huang, C., Zhang, Y., Yuan, H., Gao, H. & Zhang, S. Position of nanoparticle geometry in endocytosis: laying down to face up. Nano Lett. 13, 4546–4550 (2013).
Shi, X., von dem Bussche, A., Damage, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials happens by tip recognition and rotation. Nat. Nanotechnol. 6, 714–719 (2011).
Vácha, R., Martinez-Veracoechea, F. J. & Frenkel, D. Receptor-mediated endocytosis of nanoparticles of assorted shapes. Nano Lett. 11, 5391–5395 (2011).
Hui, Y. et al. Position of nanoparticle mechanical properties in most cancers drug supply. ACS Nano 13, 7410–7424 (2019).
Houston, Ok., Tucker, M. R., Chowdhury, J., Shirley, N. & Little, A. The plant cell wall: a posh and dynamic construction as revealed by the responses of genes underneath stress situations. Entrance Plant Sci. 7, 984 (2016).
Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated supply in the direction of advancing plant genetic engineering. Traits Biotechnol. https://doi.org/10.1016/j.tibtech.2018.03.009 (2018).
Schwab, F. et al. Obstacles, pathways and processes for uptake, translocation and accumulation of nanomaterials in vegetation – essential evaluation. Nanotoxicology 10, 257–278 (2016).
Wang, P., Lombi, E., Zhao, F.-J. & Kopittke, P. M. Nanotechnology: a brand new alternative in plant sciences. Traits Plant Sci. 21, 699–712 (2016).
Hubbard, J. D., Lui, A. & Landry, M. P. Multiscale and multidisciplinary strategy to understanding nanoparticle transport in vegetation. Curr. Opin. Chem. Eng. 30, 135–143 (2020).
Corredor, E. et al. Nanoparticle penetration and transport in residing pumpkin vegetation: in situ subcellular identification. BMC Plant Biol. 9, 45 (2009).
Bao, D. P., Oh, Z. G. & Chen, Z. Characterization of silver nanoparticles internalized by Arabidopsis vegetation utilizing single particle ICP-MS evaluation. Entrance. Plant Sci. https://doi.org/10.3389/fpls.2016.00032 (2016).
Zhang, P. et al. Form-dependent transformation and translocation of ceria nanoparticles in cucumber vegetation. Environ. Sci. Technol. Lett. 4, 380–385 (2017).
Giraldo, J. P. et al. Plant nanobionics strategy to reinforce photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).
Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Focused supply of nanomaterials with chemical cargoes in vegetation enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).
Zhang, X., Servos, M. R. & Liu, J. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA utilizing a pH-assisted and surfactant-free route. J. Am. Chem. Soc. 134, 7266–7269 (2012).
Yang, G. et al. Implications of quenching-to-dequenching swap in quantitative cell uptake and biodistribution of dye-labeled nanoparticles. Angew. Chem. Int. Ed. 60, 15426–15435 (2021).
Sattelmacher, B. The apoplast and its significance for plant mineral vitamin. New Phytol. 149, 167–192 (2001).
Yu, M. et al. Rotation-facilitated speedy transport of nanorods in mucosal tissues. Nano Lett. 16, 7176–7182 (2016).
Matsuoka, Ok., Bassham, D. C., Raikhel, N. V. & Nakamura, Ok. Totally different sensitivity to wortmannin of two vacuolar sorting alerts signifies the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130, 1307–1318 (1995).
Elkin, S. R. et al. Ikarugamycin: a pure product inhibitor of clathrin-mediated endocytosis. Site visitors 17, 1139–1149 (2016).
Aniento, F. & Robinson, D. G. Testing for endocytosis in vegetation. Protoplasma 226, 3–11 (2005).
Reynolds, G. D., Wang, C., Pan, J. & Bednarek, S. Y. Inroads into internalization: 5 years of endocytic exploration. Plant Physiol. 176, 208–218 (2018).
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).
Tiwari, M., Sharma, D. & Trivedi, P. Ok. Synthetic microRNA mediated gene silencing in vegetation: progress and views. Plant Mol. Biol. 86, 1–18 (2014).
Bennett, M., Deikman, J., Hendrix, B. & Iandolino, A. Obstacles to environment friendly foliar uptake of dsRNA and molecular obstacles to dsRNA exercise in plant cells. Entrance. Plant Sci. https://doi.org/10.3389/fpls.2020.00816 (2020).
Pinals, R. L., Yang, D., Lui, A., Cao, W. & Landry, M. P. Corona trade dynamics on carbon nanotubes by multiplexed fluorescence monitoring. J. Am. Chem. Soc. 142, 1254–1264 (2020).
Geilfus, C.-M. The pH of the apoplast: dynamic issue with useful affect underneath stress. Mol. Plant 10, 1371–1386 (2017).
Chehab, E. W., Eich, E. & Braam, J. Thigmomorphogenesis: a posh plant response to mechano-stimulation. J. Exp. Bot. 60, 43–56 (2009).
Mori, I. C. & Schroeder, J. I. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar development, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 135, 702–708 (2004).
Baldock, B. L. & Hutchison, J. E. UV–seen spectroscopy-based quantification of unlabeled DNA certain to gold nanoparticles. Anal. Chem. 88, 12072–12080 (2016).
Marcus, M. A. et al. Beamline 10.3.2 at ALS: a tough X-ray microprobe for environmental and supplies sciences. J. Synchrotron Radiat. 11, 239–247 (2004).
Mitov, M. I., Greaser, M. L. & Campbell, Ok. S. GelBandFitter – a pc program for evaluation of intently spaced electrophoretic and immunoblotted bands. Electrophoresis 30, 848–851 (2009).
Toni, L. S. et al. Optimization of phenol-chloroform RNA extraction. MethodsX 5, 599–608 (2018).
O’Leary, B. M., Rico, A., McCraw, S., Fones, H. N. & Preston, G. M. The infiltration-centrifugation method for extraction of apoplastic fluid from plant leaves utilizing Phaseolus vulgaris for example. J. Vis. Exp. https://doi.org/10.3791/52113 (2014).
Nicot, N., Hausman, J.-F., Hoffmann, L. & Evers, D. Housekeeping gene choice for real-time RT-PCR normalization in potato throughout biotic and abiotic stress. J. Exp. Bot. 56, 2907–2914 (2005).
Selvakesavan, R. Ok. & Franklin, G. Nanoparticles have an effect on the expression stability of housekeeping genes in plant cells. Nanotechnol., Sci. Appl. 13, 77–88 (2020).
Schmittgen, T. D. & Livak, Ok. J. Analyzing real-time PCR knowledge by the comparative CT methodology. Nat. Protoc. 3, 1101–1108 (2008).
[ad_2]