Latest advances of fluorescent biosensors primarily based on cyclic sign amplification know-how in biomedical detection | Journal of Nanobiotechnology
[ad_1]
Bahadır EB, Sezgintürk MK. Electrochemical biosensors for hormone analyses. Biosens Bioelectron. 2015;68:62–71.
Martínez-Máñez R, Sancenón F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev. 2003;103:4419–76.
Xiao Y, Qu X, Plaxco KW, Heeger AJ. Label-free electrochemical detection of DNA in blood serum through target-induced decision of an electrode-bound DNA pseudoknot. J Am Chem Soc. 2007;129:11896–7.
Guo Y, Chen Q, Qi Y, Xie Y, Qian H, Yao W, Pei R. Label-free ratiometric DNA detection utilizing two sorts of interaction-responsive emission dyes. Biosens Bioelectron. 2017;87:320–4.
Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S, Hayat A, Marty JL. Designed Methods for Fluorescence-Primarily based Biosensors for the Detection of Mycotoxins. Toxins (Basel). 2018;10:89.
Gale PA. Anion receptor chemistry: highlights from 2008 and 2009. Chem Soc Rev. 2010;39:3746–71.
Liu J, Cao Z, Lu Y. Practical nucleic acid sensors. Chem Rev. 2009;109:1948–98.
Park TE, Lee SH. A micellized fluorescence sensor primarily based on amplified quenching for extremely delicate detection of non-transferrin-bound iron in serum. Dalton Trans. 2020;67:9.
Wu D, Chen L, Lee W, Ko G, Yin J, Yoon J. Latest progress within the improvement of natural dye primarily based near-infrared fluorescence probes for steel ions. Coord Chem Rev. 2018;354:74–97.
Liu Z, Mo Z, Niu X, Yang X, Jiang Y, Zhao P, Liu N, Guo R. Extremely delicate fluorescence sensor for mercury(II) primarily based on boron- and nitrogen-co-doped graphene quantum dots. J Colloid Interface Sci. 2020;566:357–68.
Chen P, Jiang X, Huang Ok, Hu P, Li X, Wei L, Liu W, Wei L, Tao C, Ying B, et al. Multimode MicroRNA Sensing through A number of Enzyme-Free Sign Amplification and Cation-Trade Response. ACS Appl Mater Interfaces. 2019;11:36476–84.
Gnaim S, Shabat D. Exercise-Primarily based Optical Sensing Enabled by Self-Immolative Scaffolds: Monitoring of Launch Occasions by Fluorescence or Chemiluminescence Output. Acc Chem Res. 2019;52:2806–17.
Liang Ok, Wang H, Li P, Zhu Y, Liu J, Tang B. Detection of microRNAs utilizing toehold-initiated rolling circle amplification and fluorescence resonance power switch. Talanta. 2020;207:120285.
Wu Z, Zhou H, He J, Li M, Ma X, Xue J, Li X, Fan X. G-triplex primarily based molecular beacon with duplex-specific nuclease amplification for the particular detection of microRNA. Analyst. 2019;144:5201–6.
Li X, Huang N, Zhang L, Zhao J, Zhao S. A T7 exonuclease assisted dual-cycle sign amplification assay of miRNA utilizing nanospheres-enhanced fluorescence polarization. Talanta. 2019;202:297–302.
Liu Y, Zhang J, Tian J, Fan X, Geng H, Cheng Y. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification response. Anal Bioanal Chem. 2017;409:107–14.
Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Xu Y. Selectively assaying CEA primarily based on a inventive technique of gold nanoparticles enhancing silver nanoclustersʹ fluorescence. Biosens Bioelectron. 2015;64:345–51.
Xu H, Zhu X, Ye H, Yu L, Liu X, Chen G. A easy “molecular beacon”-based fluorescent sensing technique for delicate and selective detection of mercury (II). Chem Commun (Camb). 2011;47:12158–60.
Miao P, Wang B, Meng F, Yin J, Tang Y. Ultrasensitive detection of microRNA via rolling circle amplification on a DNA tetrahedron embellished electrode. Bioconjug Chem. 2015;26:602–7.
Hong C, Baek A, Hah SS, Jung W, Kim D-E. Fluorometric Detection of MicroRNA Utilizing Isothermal Gene Amplification and Graphene Oxide. Anal Chem. 2016;88:2999–3003.
Zhang Z, Wang S, Ma J, Zhou T, Wang F, Wang X, Zhang G. Rolling Circle Amplification-Primarily based Polyvalent Molecular Beacon Probe-Assisted Sign Amplification Methods for Delicate Detection of B16 Cells. ACS Biomater Sci Eng. 2020;6:3114–21.
Liu X, Zou M, Li D, Yuan R, Xiang Y. Hairpin/DNA ring ternary probes for extremely delicate detection and selective discrimination of microRNA amongst relations. Anal Chim Acta. 2019;1076:138–43.
Zhao W, Ali MM, Brook MA, Li Y. Rolling circle amplification: purposes in nanotechnology and biodetection with practical nucleic acids. Angew Chem Int Ed Engl. 2008;47:6330–7.
He Y, Yang X, Yuan R, Chai Y. “Off” to “On” Floor-Enhanced Raman Spectroscopy Platform with Padlock Probe-Primarily based Exponential Rolling Circle Amplification for Ultrasensitive Detection of MicroRNA 155. Anal Chem. 2017;89:2866–72.
Lu W, Wang Y, Music S, Chen C, Yao B, Wang M. A fishhook probe-based rolling circle amplification (FP-RCA) assay for environment friendly isolation and detection of microRNA with out whole RNA extraction. Analyst. 2018;143:5046–53.
Gao Z, Wu C, Lv S, Wang C, Zhang N, Xiao S, Han Y, Xu H, Zhang Y, Li F, et al. Nicking-enhanced rolling circle amplification for delicate fluorescent detection of cancer-related microRNAs. Anal Bioanal Chem. 2018;410:6819–26.
Jiang H-X, Liang Z-Z, Ma Y-H, Kong D-M, Hong Z-Y. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification technique for extremely delicate microRNA detection. Anal Chim Acta. 2016;943:114–22.
Liu C, Han J, Zhou L, Zhang J, Du J. DNAzyme-Primarily based Goal-Triggered Rolling-Circle Amplification for Excessive Sensitivity Detection of microRNAs. Sensors (Basel). 2020;20:12.
Liu Y, Liao R, Wang H, Gong H, Chen C, Chen X, Cai C. Correct and delicate fluorescence detection of DNA primarily based on G-quadruplex hairpin DNA. Talanta. 2018;176:422–7.
Li Q, Liu Z, Zhou D, Pan J, Liu C, Chen J. A cascade toehold-mediated strand displacement technique for label-free and delicate non-enzymatic recycling amplification detection of the HIV-1 gene. Analyst. 2019;144:2173–8.
Zhang F, Xiang L, Xiao X, Chen X, Chen C, Cai C. A fast label- and enzyme-free G-quadruplex-based fluorescence technique for highly-sensitive detection of HIV DNA. Analyst. 2019;145:206–12.
Simmel FC, Yurke B, Singh HR. Rules and purposes of nucleic acid strand displacement reactions. Chem Rev. 2019;119:6326–69.
Tang W, Zhong W, Tan Y, Wang GA, Li F, Liu Y. DNA strand displacement response: a strong software for discriminating single nucleotide variants. Matters Curr Chem (Cham). 2020;378:10.
Xu H, Wu B, Wang J, Cao H, Yang J, Hao Ok, Chen S, Ye S, Shen Z. Label-free detection of most cancers associated gene primarily based on the right track recycling and palindrome-mediated strand displacement amplification. Talanta. 2020;215:120897.
Zhang Y, Wang Y, Rizvi SFA, Zhang Y, Zhang Y, Liu X, Zhang H. Detection of DNA 3’-phosphatase exercise primarily based on exonuclease III-assisted cascade recycling amplification response. Talanta. 2019;204:499–506.
Zhao H, Yan Y, Chen M, Hu T, Wu Ok, Liu H, Ma C. Exonuclease III-assisted sign amplification technique for delicate fluorescence detection of polynucleotide kinase primarily based on poly(thymine)-templated copper nanoparticles. Analyst. 2019;144:6689–97.
Huang J, Shangguan J, Guo Q, Ma W, Wang H, Jia R, Ye Z, He X, Wang Ok. Colorimetric and fluorescent dual-mode detection of microRNA primarily based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst. 2019;144:4917–24.
Zhou H, Yang C, Chen H, Li X, Li Y, Fan X. A easy G-quadruplex molecular beacon-based biosensor for extremely selective detection of microRNA. Biosens Bioelectron. 2017;87:552–7.
Wu Ok, Ma C, Deng Z, Fang N, Tang Z, Zhu X, Wang Ok. Label-free and nicking enzyme-assisted fluorescence sign amplification for RNase H dedication primarily based on a G-quadruplexe/thioflavin T complicated. Talanta. 2018;182:142–7.
Shen J, Zhou X, Shan Y, Yue H, Huang R, Hu J, Xing D. Delicate detection of a bacterial pathogen utilizing allosteric probe-initiated catalysis and CRISPR-Cas13a amplification response. Nat Commun. 2020;11:267.
Mittal S, Thakur S, Mantha AK, Kaur H. Bio-analytical purposes of nicking endonucleases assisted signal-amplification methods for detection of most cancers biomarkers -DNA methyl transferase and microRNA. Biosens Bioelectron. 2019;124–125:233–43.
Lou YF, Peng YB, Luo X, Yang Z, Wang R, Solar D, Li L, Tan Y, Huang J, Cui L. A common aptasensing platform primarily based on cryonase-assisted sign amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: software to the detection of theophylline and ATP. Mikrochim Acta. 2019;186:494.
Fan T, Mao Y, Liu F, Zhang W, Lin JS, Yin J, Tan Y, Huang X, Jiang Y. Label-free fluorescence detection of circulating microRNAs primarily based on duplex-specific nuclease-assisted goal recycling coupled with rolling circle amplification. Talanta. 2019;200:480–6.
Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S, Singer VL. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized to be used with 300-nm ultraviolet transilluminators. Anal Biochem. 1999;268:278–88.
Xu Y, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y. Terminal safety of small molecule-linked ssDNA for label-free and delicate fluorescent detection of folate receptor. Talanta. 2014;128:237–41.
Zheng D, Zou R, Lou X. Label-free fluorescent detection of ions, proteins, and small molecules utilizing structure-switching aptamers, SYBR Gold, and exonuclease I. Anal Chem. 2012;84:3554–60.
Cui L, Zhu Z, Lin N, Zhang H, Guan Z, Yang CJ. A T7 exonuclease-assisted cyclic enzymatic amplification technique coupled with rolling circle amplification: a dual-amplification technique for delicate and selective microRNA detection. Chem Commun (Camb). 2014;50:1576–8.
Yang CJ, Cui L, Huang J, Yan L, Lin X, Wang C, Zhang WY, Kang H. Linear molecular beacons for extremely delicate bioanalysis primarily based on cyclic Exo III enzymatic amplification. Biosens Bioelectron. 2011;27:119–24.
Xu H, Zhang Y, Zhang S, Solar M, Li W, Jiang Y, Wu ZS. Ultrasensitive assay primarily based on a mixed cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Anal Chim Acta. 2019;1047:172–8.
Li M, Xu X, Cai Q, Luo X, Zhou Z, Xu G, Xie Y. Graphene oxide-based fluorometric dedication of microRNA-141 utilizing rolling circle amplification and exonuclease III-aided recycling amplification. Mikrochim Acta. 2019;186:531.
Zhu H, Swami U, Preet R, Zhang J. Harnessing DNA Replication Stress for Novel Most cancers Remedy. Genes (Basel). 2020;11:234.
O’Donnell M, Langston L, Stillman B. Rules and ideas of DNA replication in micro organism, archaea, and eukarya. Chilly Spring Harb Perspect Biol. 2013;5:9.
Boyer AS, Walter D, Sørensen CS. DNA replication and most cancers: From dysfunctional replication origin actions to therapeutic alternatives. Semin Most cancers Biol. 2016;37–38:16–25.
Cordray MS, Richards-Kortum RR. Rising nucleic acid-based exams for point-of-care detection of malaria. Am J Trop Med Hyg. 2012;87:223–30.
Giardina E, Spinella A, Novelli G. Previous, current and way forward for forensic DNA typing. Nanomedicine (Lond). 2011;6:257–70.
Gerasimova YV, Kolpashchikov DM. Enzyme-assisted goal recycling (EATR) for nucleic acid detection. Chem Soc Rev. 2014;43:6405–38.
Sueoka T, Koyama Ok, Hayashi G, Okamoto A. Chemistry-Pushed Epigenetic Investigation of Histone and DNA Modifications. Chemical report (New York, NY). 2018;18:1727–44.
Iwe IA, Li Z, Huang J. A dual-cycling fluorescence scheme for ultrasensitive DNA detection via sign amplification and goal regeneration. Analyst. 2019;144:2649–55.
Wang SX, Liu KS, Lou YF, Wang SQ, Peng YB, Chen JP, Huang JH, Xie SX, Cui L, Wang X. RNase H meets molecular beacons: an ultrasensitive fluorometric assay for nucleic acids. Mikrochim Acta. 2018;185:375.
Huang J, Wu J, Li Z. Molecular beacon-based enzyme-free technique for amplified DNA detection. Biosens Bioelectron. 2016;79:758–62.
Alberts B, Johnson A, Lewis J, Raff M, Roberts Ok, Walter P: Molecular biology of the cell (4th ed.). Garland Science; 2002.
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in most cancers. Nat Rev Most cancers. 2018;18:5–18.
Yanas A, Liu KF. RNA modifications and the hyperlink to human illness. Strategies Enzymol. 2019;626:133–46.
de Almeida SF, García-Sacristán A, Custódio N, Carmo-Fonseca M. A hyperlink between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res. 2010;38:8015–26.
Messenger RNA. (mRNA): The Hyperlink between DNA and Protein. J Encyclopedia Cell Biol. 2016;3:341–5.
Qiao G, Gao Y, Li N, Yu Z, Zhuo L, Tang B. Simultaneous detection of intracellular tumor mRNA with bi-color imaging primarily based on a gold nanoparticle/molecular beacon. Chemistry. 2011;17:11210–5.
Yang L, Li J, Pan W, Wang H, Li N, Tang B. Fluorescence and photoacoustic dual-mode imaging of tumor-related mRNA with a covalent linkage-based DNA nanoprobe. Chem Commun (Camb). 2018;54:3656–9.
Dang W, Liu H, Fan J, Zhao C, Lengthy Y, Tong C, Liu B. Monitoring VEGF mRNA and imaging in dwelling cells in vitro utilizing rGO-based twin fluorescent sign amplification platform. Talanta. 2019;205:120092.
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Candy-Cordero A, Ebert BL, Mak RH, Ferrando AA. MicroRNA expression profiles classify human cancers. Cncer. 2019;435:834–8.
Bo B, Zhang T, Jiang Y, Cui H, Miao P. Triple Sign Amplification Technique for Ultrasensitive Dedication of miRNA Primarily based on Duplex Particular Nuclease and Bridge DNA–Gold Nanoparticles. Anal Chem. 2018;90:2395–400.
Hammond, Evaluations SMJADD: An outline of microRNAs. 87:3–14.
Li S, Liu C, Gong H, Chen C, Chen X, Cai C. Easy G-quadruplex-based 2-aminopurine fluorescence probe for extremely delicate and amplified detection of microRNA-21. Talanta. 2018;178:974–9.
Xu H, Zhang S, Ouyang C, Wang Z, Wu D, Liu Y, Jiang Y, Wu ZS. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs. Talanta. 2019;192:175–81.
Gong D, Feng P-C, Ke X-F, Kuang H-L, Pan L-L, Ye Q, Wu J-B. Silencing Lengthy Non-coding RNA LINC01224 Inhibits Hepatocellular Carcinoma Development through MicroRNA-330-5p-Induced Inhibition of CHEK1. Mol Ther Nucleic acids. 2019;19:482–97.
Music X, Cao G, Jing L, Lin S, Wang X, Zhang J, Wang M, Liu W, Lv C. Analysing the connection between lncRNA and protein-coding gene and the position of lncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med. 2014;18:9.
Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Lengthy noncoding RNA as modular scaffold of histone modification complexes. Science (New York, NY). 2010;329:689–93.
Yu X, Zheng H, Tse G, Chan MT, Wu WK. Lengthy non-coding RNAs in melanoma. Cell Prolif. 2018;51:e12457.
Zhang Y, Wang XY, Su X, Zhang CY. Ultrasensitive detection of lengthy non-coding RNAs primarily based on duplex-specific nuclease-actuated cyclic enzymatic repairing-mediated sign amplification. Chem Commun (Camb). 2019;55:6827–30.
Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Solar W, Dou Ok, Li H. Round RNA: A brand new star of noncoding RNAs. Most cancers Lett. 2015;365:141–8.
Chen L-L, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–8.
Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, et al. Round RNAs in human most cancers. Mol Most cancers. 2017;16:25.
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 round RNA retards cell cycle development through forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–58.
Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, et al. Round RNAs perform as ceRNAs to control and management human most cancers development. Mol Most cancers. 2018;17:79.
Liu Y, Zhang X, Liu M, Xu F, Zhang Q, Zhang Y, Weng X, Liu S, Du Y, Zhou X. Direct detection of circRNA in actual samples utilizing reverse transcription-rolling circle amplification. Anal Chim Acta. 2020;1101:169–75.
Jiao J, Gao T, Shi H, Sheng A, Xiang Y, Shu Y, Li G. A technique to immediately assay circRNA in actual samples. Chem Commun (Camb). 2018;54:13451–4.
Qu H, Chen M, Ge J, Zhang X, He S, Xiong F, Yan Q, Zhang S, Gong Z, Guo C, et al. A fluorescence technique for circRNA quantification in tumor cells primarily based on T7 nuclease-assisted biking enzymatic amplification. Anal Chim Acta. 2022;1189:34.
Spiro RG. Glycoproteins: construction, metabolism and biology. N Engl J Med. 1963;269:616–21.
Tan H, Chen L, Li X, Li M, Zhao M. A target-driven DNA-based molecular machine for fast and homogeneous detection of arginine-vasopressin. Analyst. 2020;145:880–6.
Guo T, Noble W, Hanger DP. Roles of tau protein in well being and illness. Acta Neuropathol. 2017;133:665–704.
Saini J, Sharma PK. Scientific, Prognostic and Therapeutic Significance of Warmth Shock Proteins in Most cancers. Curr Drug Targets. 2018;19:1478–90.
Music Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The rising position of SPOP protein in tumorigenesis and most cancers remedy. Mol Most cancers. 2020;19:2.
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020;214:120716.
Hammarström S. The carcinoembryonic antigen (CEA) household: buildings, advised features and expression in regular and malignant tissues. Semin Most cancers Biol. 1999;9:67–81.
Holdenrieder S, Wehnl B, Hettwer Ok, Simon Ok, Uhlig S, Dayyani F. Carcinoembryonic antigen and cytokeratin-19 fragments for evaluation of remedy response in non-small cell lung most cancers: a scientific evaluation and meta-analysis. Br J Most cancers. 2017;116:1037–45.
Konishi T, Shimada Y, Hsu M, Tufts L, Jimenez-Rodriguez R, Cercek A, Yaeger R, Saltz L, Smith JJ, Nash GM, et al. Affiliation of Preoperative and Postoperative Serum Carcinoembryonic Antigen and Colon Most cancers End result. JAMA Oncol. 2018;4:309–15.
Xu J, Shi M, Huang H, Hu Ok, Chen W, Huang Y, Zhao S. A fluorescent aptasensor primarily based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Analyst. 2018;143:3918–25.
Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371:1624–32.
Pittman QJ, Chen X, Mouihate A, Hirasawa M, Martin S. Arginine vasopressin, fever and temperature regulation. Prog Mind Res. 1998;119:383–92.
Clements JA, Funder JW. Arginine vasopressin (AVP) and AVP-like immunoreactivity in peripheral tissues. Endocr Rev. 1986;7:449–60.
Pu Y, Zhu Z, Han D, Liu H, Liu J, Liao J, Zhang Ok, Tan W. Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst. 2011;136:4138–40.
Patterson C, Guariguata L, Dahlquist G, Soltész G, Ogle G, Silink M. Diabetes within the younger – a world view and worldwide estimates of numbers of youngsters with kind 1 diabetes. Diabetes Res Clin Pract. 2014;103:161–75.
Preethi BL, Jaisri G, Kumar KMP, Sharma R. Evaluation of insulin resistance in normoglycemic younger adults. Fiziol Cheloveka. 2011;37:118–25.
Liu C, Han J, Zhang J, Du J. Novel detection platform for insulin primarily based on dual-cycle sign amplification by Exonuclease III. Talanta. 2019;199:596–602.
Yan Y, Ma C, Tang Z, Chen M, Zhao H. A novel fluorescent assay primarily based on DNAzyme-assisted detection of prostate particular antigen for sign amplification. Anal Chim Acta. 2020;1104:172–9.
Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, et al. Inherited DNA-Restore Gene Mutations in Males with Metastatic Prostate Most cancers. N Engl J Med. 2016;375:443–53.
Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of development and metabolism. Nat Rev Genet. 2006;7:606–19.
Ma Y, Wang Z, Zhang M, Han Z, Chen D, Zhu Q, Gao W, Qian Z, Gu Y. A Telomerase-Particular Doxorubicin-Releasing Molecular Beacon for Most cancers Theranostics. Angew Chem Int Ed Engl. 2016;55:3304–8.
Gao Y, Xu J, Li B, Jin Y. PCR-free and label-free fluorescent detection of telomerase exercise at single-cell degree primarily based on triple amplification. Biosens Bioelectron. 2016;81:415–22.
Zhang H, Li B, Solar Z, Zhou H, Zhang S. Integration of intracellular telomerase monitoring by electrochemiluminescence know-how and focused most cancers remedy by reactive oxygen species. Chem Sci. 2017;8:8025–9.
Li CC, Zhang Y, Liu WJ, Zhang CY. A triple-amplification technique for delicate detection of telomerase on the single-cell degree. Chem Commun (Camb). 2018;54:9317–20.
Liu X, Li X, Li J, Jiang B, Yuan R, Xiang Y. A multi-recycling amplification-based sensor for label-free and extremely delicate detection of telomerase from most cancers cells. Anal Chim Acta. 2019;1086:116–21.
Yang F, Li X, Li J, Xiang Y, Yuan R. Goal-triggered activation of rolling circle amplification for label-free and delicate fluorescent uracil-DNA glycosylase exercise detection and inhibition. Talanta. 2019;204:812–6.
Li T, Wang E, Dong S. Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural modifications and label-free detection of potassium ion. Anal Chem. 2010;82:7576–80.
Zhu J, Hao Q, Liu Y, Guo Z, Rustam B, Jiang W. Integrating DNA construction change with branched hairpins for the detection of uracil-DNA glycosylase exercise and inhibitor screening. Talanta. 2018;179:51–6.
Cui YX, Feng XN, Wang YX, Pan HY, Pan H, Kong DM. An integrated-molecular-beacon primarily based a number of exponential strand displacement amplification technique for ultrasensitive detection of DNA methyltransferase exercise. Chem Sci. 2019;10:2290–7.
Ji D, Wang H, Ge J, Zhang L, Li J, Bai D, Chen J, Li Z. Label-free and fast detection of ATP primarily based on construction switching of aptamers. Anal Biochem. 2017;526:22–8.
Faris A, Spence DM. Measuring the simultaneous results of hypoxia and deformation on ATP launch from erythrocytes. Analyst. 2008;133:678–82.
Zhang B, Wei C. The delicate detection of ATP and ADA primarily based on turn-on fluorescent copper/silver nanoclusters. Anal Bioanal Chem. 2020;12:456.
Luo J, Shen X, Li B, Li X, Zhou X. Sign amplification by strand displacement in a carbon dot primarily based fluorometric assay for ATP. Mikrochim Acta. 2018;185:392.
Xu L, Jiang B, Zhou W, Yuan R, Xiang Y. Coupling strand extension/excision amplification with goal recycling allows extremely delicate and aptamer-based label-free sensing of ATP in human serum. Analyst. 2020;145:434–9.
Ji X, Yi B, Xu Y, Zhao Y, Zhong H, Ding C. A novel fluorescent biosensor for Adenosine Triphosphate detection primarily based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Talanta. 2017;169:8–12.
Wang J, Wang Y, Liu S, Wang H, Zhang X, Music X, Huang J. Duplex featured polymerase-driven concurrent technique for detecting of ATP primarily based on endonuclease-fueled suggestions amplification. Anal Chim Acta. 2019;1060:79–87.
Das Ok, Sarkar S, Das PK. Fluorescent Indicator Displacement Assay: Ultrasensitive Detection of Glutathione and Selective Most cancers Cell Imaging. ACS Appl Mater Interfaces. 2016;8:25691–701.
Estrela JM, Ortega A, Obrador E. Glutathione in most cancers biology and remedy. Crit Rev Clin Lab Sci. 2006;43:143–81.
Harfield JC, Batchelor-McAuley C, Compton RG. Electrochemical dedication of glutathione: a evaluation. Analyst. 2012;137:2285–96.
Yuan D, Ding L, Solar Z, Li X. MRI/Fluorescence bimodal amplification system for mobile GSH detection and tumor cell imaging primarily based on manganese dioxide nanosheet. Sci Rep. 2018;8:1747.
Duarte SC, Pena A, Lino CM. A evaluation on ochratoxin A incidence and results of processing of cereal and cereal derived meals merchandise. Meals Microbiol. 2010;27:187–98.
Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, Yuan Z. Ochratoxin A: Toxicity, oxidative stress and metabolism. Meals Chem Toxicol. 2018;112:320–31.
Hao L, Wang W, Shen X, Wang S, Li Q, An F, Wu S. A Fluorescent DNA Hydrogel Aptasensor Primarily based on the Self-Meeting of Rolling Circle Amplification Merchandise for Delicate Detection of Ochratoxin A. J Agric Meals Chem. 2020;68:369–75.
Peng Ok, Xie P, Yang ZH, Yuan R, Zhang Ok. Extremely delicate electrochemical nuclear issue kappa B aptasensor primarily based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification technique. Biosens Bioelectron. 2018;102:282–7.
Jiao L, Jiang M, Liu J, Wei L, Wu M. Nuclear factor-kappa B activation inhibits proliferation and promotes apoptosis of vascular easy muscle cells. Vascular. 2018;26:634–40.
Du Ok, Wu J, Pan A, Li D, Cui L, Peng C. Cyclic enzymatic amplification technique for extremely delicate detection of nuclear factor-kappa B. Anal Chim Acta. 2019;1068:80–6.
Layland J, Carrick D, Lee M, Oldroyd Ok, Berry C. Adenosine: physiology, pharmacology, and medical purposes. JACC Cardiovasc Interv. 2014;7:581–91.
Wang G, Wang L, Li X, Xu X, Jiang W. T7 exonuclease-assisted and target-triggered cascade twin recycling sign amplification technique for the delicate and particular detection of adenosine. Talanta. 2019;197:234–8.
Si H, Sheng R, Li Q, Feng J, Li L, Tang B. Extremely Delicate Fluorescence Imaging of Zn(2+) and Cu(2+) in Residing Cells with Sign Amplification Primarily based on Practical DNA Self-Meeting. Anal Chem. 2018;90:8785–92.
Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang J-H, Lu Y. Imaging Endogenous Metallic Ions in Residing Cells Utilizing a DNAzyme-Catalytic Hairpin Meeting Probe. Angew Chem Int Ed. 2017;56:8721–5.
Jing W, Lu Y, Yang G, Wang F, He L, Liu Y. Fluorescence sensor array primarily based on amino acids-modulating quantum dots for the discrimination of steel ions. Anal Chim Acta. 2017;985:175–82.
Zaib M, Athar MM, Saeed A, Farooq U. Electrochemical dedication of inorganic mercury and arsenic–A evaluation. Biosens Bioelectron. 2015;74:895–908.
Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc. 2006;128:2172–3.
Zhou D, Zeng L, Pan J, Li Q, Chen J. Autocatalytic DNA circuit for Hg(2+) detection with excessive sensitivity and selectivity primarily based on exonuclease III and G-quadruplex DNAzyme. Talanta. 2020;207:120258.
Li D, Yang F, Li X, Yuan R, Xiang Y. Goal-mediated base-mismatch initiation of a non-enzymatic sign amplification community for extremely delicate sensing of Hg2+. Analyst. 2020;145:507–12.
Niu X, Liu Y, Wang F, Luo D. Extremely delicate and selective optical sensor for lead ion detection primarily based on liquid crystal embellished with DNAzyme. Decide Specific. 2019;27:30421–8.
Dahaghin Z, Kilmartin PA, Mousavi HZ. Novel ion imprinted polymer electrochemical sensor for the selective detection of lead(II). Meals Chem. 2020;303:125374.
Wen ZB, Liang WB, Zhuo Y, Xiong CY, Zheng YN, Yuan R, Chai YQ. An environment friendly target-intermediate recycling amplification technique for ultrasensitive fluorescence assay of intracellular lead ions. Chem Commun (Camb). 2017;53:7525–8.
Tang D, Xia B, Tang Y, Zhang J, Zhou Q. Metallic-ion-induced DNAzyme on magnetic beads for detection of lead(II) by utilizing rolling circle amplification, glucose oxidase, and readout of pH modifications. Microchim Acta. 2019;98:186.
López Marzo AM, Pons J, Blake DA, Merkoçi A. All-integrated and extremely delicate paper primarily based system with pattern therapy platform for Cd2+ immunodetection in consuming/faucet waters. Anal Chem. 2013;85:3532–8.
Wu Y, Zhan S, Wang L, Zhou P. Collection of a DNA aptamer for cadmium detection primarily based on cationic polymer mediated aggregation of gold nanoparticles. Analyst. 2014;139:1550–61.
Pan J, Zeng L, Chen J. An enzyme-free DNA circuit for the amplified detection of Cd(2+) primarily based on hairpin probe-mediated toehold binding and department migration. Chem Commun (Camb). 2019;55:11932–5.
Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Opthof T, Fiolet JW. Continual inhibition of Na+/H+-exchanger attenuates cardiac hypertrophy and prevents mobile transforming in coronary heart failure. Cardiovasc Res. 2005;65:83–92.
Efendiev R, Budu CE, Cinelli AR, Bertorello AM, Pedemonte CH. Intracellular Na+ regulates dopamine and angiotensin II receptors availability on the plasma membrane and their mobile responses in renal epithelia. J Biol Chem. 2003;278:28719–26.
Boyiadzis M, Whiteside TL. The rising roles of tumor-derived exosomes in hematological malignancies. Leukemia. 2017;31:1259–68.
van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.
Colombo M, Raposo GA. Théry CJARoC. Biology D: Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Different Extracellular Vesicles. 2014;30:255–89.
Boing AN, Harrison P, Sturk A, Nieuwland RJPR. Classification, Features, and Scientific Relevance of Extracellular Vesicles. Clinic. 2012;64:676–705.
He C, Zheng S, Luo Y, Wang BJT. Exosome Theranostics: Biology and Translational Drugs. 2018;8:237–55.
Huang L, Wang DB, Singh N, Yang F, Gu N, Zhang XE. A dual-signal amplification platform for delicate fluorescence biosensing of leukemia-derived exosomes. Nanoscale. 2018;10:20289–95.
Huang R, He L, Li S, Liu H, Jin L, Chen Z, Zhao Y, Li Z, Deng Y, He N. A easy fluorescence aptasensor for gastric most cancers exosome detection primarily based on branched rolling circle amplification. Nanoscale. 2020;12:2445–51.
Wang H, Chen H, Huang Z, Li T, Deng A, Kong J. DNase I enzyme-aided fluorescence sign amplification primarily based on graphene oxide-DNA aptamer interactions for colorectal most cancers exosome detection. Talanta. 2018;184:219–26.
Yao M, Lv X, Deng Y, Rasheed M. Particular and simultaneous detection of micro RNA 21 and let-7a by rolling circle amplification mixed with lateral circulate strip. Anal Chim Acta. 2019;1055:115–25.
Du M, Mao G, Tian S, Liu Y, Zheng J, Ke X, Zheng Z, Wang H, Ji X, He Z. Goal-Induced Cascade Amplification for Homogeneous Virus Detection. Anal Chem. 2019;91:15099–106.
Ciftci S, Neumann F, Abdurahman S, Appelberg KS, Mirazimi A, Nilsson M, Madaboosi N. Digital Rolling Circle Amplification-Primarily based Detection of Ebola and Different Tropical Viruses. J Mol Diagn. 2020;22:272–83.
Signat B, Roques C, Poulet P, Duffaut D. Fusobacterium nucleatum in periodontal well being and illness. Curr Points Mol Biol. 2011;13:25–36.
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Maintain GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.
Jiao J, Li P, Gu Y, Du X, Wang S, Wang J. A fluorescence quenching-recovery sensor primarily based on RCA for the particular evaluation of Fusobacterium nucleatum. nucleatum. Anal Biochem. 2020;604:89.
Nandakumar V, La Belle JT, Reed J, Shah M, Cochran D, Joshi L, Alford TL. A technique for fast detection of Salmonella typhimurium utilizing label-free electrochemical impedance spectroscopy. Biosens Bioelectron. 2008;24:1045–8.
Leng X, Wang Y, Li R, Liu S, Yao J, Pei Q, Cui X, Tu Y, Tang D, Huang J. Round exponential amplification of photoinduced electron switch utilizing hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric dedication of pathogenic micro organism. Microchim Acta. 2018;185:78.
Abdelatif OM, Chandler FW, McGuire BS Jr. Chlamydia trachomatis in power abacterial prostatitis: demonstration by colorimetric in situ hybridization. Hum Pathol. 1991;22:41–4.
Lee CY, Jang H, Kim H, Jung Y, Park KS, Park HG. Delicate detection of DNA from Chlamydia trachomatis by utilizing flap endonuclease-assisted amplification and graphene oxide-based fluorescence signaling. Microchim Acta. 2019;186:8.
[ad_2]