Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to reinforce anti-PD-L1 remedy for malignant pleural effusion

[ad_1]

  • 1.

    Zamboni, M. M., da Silva, C. T. Jr., Baretta, R., Cunha, E. T. & Cardoso, G. P. Vital prognostic elements for survival in sufferers with malignant pleural effusion. BMC Pulm. Med. 15, 29 (2015).


    Google Scholar
     

  • 2.

    Murthy, P. et al. Making chilly malignant pleural effusions sizzling: driving novel immunotherapies. Oncoimmunology 8, e1554969 (2019).


    Google Scholar
     

  • 3.

    Morgensztern, D., Waqar, S., Subramanian, J., Trinkaus, Okay. & Govindan, R. Prognostic influence of malignant pleural effusion at presentation in sufferers with metastatic non-small-cell lung most cancers. J. Thorac. Oncol. 7, 1485–1489 (2012).


    Google Scholar
     

  • 4.

    American Thoracic Society. Administration of malignant pleural effusions. Am. J. Respir. Crit. Care Med. 162, 1987–2001 (2000).

  • 5.

    Stathopoulos, G. T. & Kalomenidis, I. Malignant pleural effusion: tumor-host interactions unleashed. Am. J. Respir. Crit. Care Med. 186, 487–492 (2012).


    Google Scholar
     

  • 6.

    Lievense, L. A. et al. Pleural effusion of sufferers with malignant mesothelioma induces macrophage-mediated T cell suppression. J. Thorac. Oncol. 11, 1755–1764 (2016).


    Google Scholar
     

  • 7.

    Donnenberg, A. D., Luketich, J. D. & Donnenberg, V. S. Secretome of pleural effusions related to non-small cell lung most cancers (NSCLC) and malignant mesothelioma: therapeutic implications. Oncotarget 10, 6456–6465 (2019).


    Google Scholar
     

  • 8.

    Cornelissen, R. et al. Prolonged tumor management after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant remedy in sufferers with malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med. 193, 1023–1031 (2016).

    CAS 

    Google Scholar
     

  • 9.

    Murthy, V., Katzman, D. & Sterman, D. H. Intrapleural immunotherapy: an replace on rising remedy methods for pleural malignancy. Clin. Respir. J. 13, 272–279 (2019).


    Google Scholar
     

  • 10.

    Khanna, S. et al. Malignant mesothelioma effusions are infiltrated by CD3(+) T cells extremely expressing PD-L1 and the PD-L1(+) tumor cells inside these effusions are vulnerable to ADCC by the anti-PD-L1 antibody avelumab. J. Thorac. Oncol. 11, 1993–2005 (2016).


    Google Scholar
     

  • 11.

    Tseng, Y. H. et al. PD-L1 expression of tumor cells, macrophages, and immune cells in non-small cell lung most cancers sufferers with malignant pleural effusion. J. Thorac. Oncol. 13, 447–453 (2018).

    CAS 

    Google Scholar
     

  • 12.

    Ghanim, B. et al. Tumour cell PD-L1 expression is prognostic in sufferers with malignant pleural effusion: the influence of C-reactive protein and immune-checkpoint inhibition. Sci. Rep. 10, 5784 (2020).

    CAS 

    Google Scholar
     

  • 13.

    Hassan, R. et al. Efficacy and security of avelumab remedy in sufferers with superior unresectable mesothelioma: section 1b outcomes from the JAVELIN Strong Tumor Trial. JAMA Oncol. 5, 351–357 (2019).


    Google Scholar
     

  • 14.

    Alley, E. W., Katz, S. I., Cengel, Okay. A. & Simone, C. B. II Immunotherapy and radiation remedy for malignant pleural mesothelioma. Transl. Lung Most cancers Res. 6, 212–219 (2017).

    CAS 

    Google Scholar
     

  • 15.

    Bakker, W., Nijhuis-Heddes, J. M. & van der Velde, E. A. Put up-operative intrapleural BCG in lung most cancers: a 5-year follow-up report. Most cancers Immunol. Immunother. 22, 155–159 (1986).

    CAS 

    Google Scholar
     

  • 16.

    Yanagawa, H. et al. Intrapleural instillation of interferon gamma in sufferers with malignant pleurisy attributable to lung most cancers. Most cancers Immunol. Immunother. 45, 93–99 (1997).

    CAS 

    Google Scholar
     

  • 17.

    Sartori, S. et al. Potential randomized trial of intrapleural bleomycin versus interferon alfa-2b through ultrasound-guided small-bore chest tube within the palliative remedy of malignant pleural effusions. J. Clin. Oncol. 22, 1228–1233 (2004).

    CAS 

    Google Scholar
     

  • 18.

    Goey, S. H. et al. Intrapleural administration of interleukin 2 in pleural mesothelioma: a section I–II examine. Br. J. Most cancers 72, 1283–1288 (1995).

    CAS 

    Google Scholar
     

  • 19.

    Donnenberg, A. D., Luketich, J. D., Dhupar, R. & Donnenberg, V. S. Remedy of malignant pleural effusions: the case for localized immunotherapy. J. Immunother. Most cancers 7, 110 (2019).


    Google Scholar
     

  • 20.

    Barber, G. N. STING: an infection, irritation and most cancers. Nat. Rev. Immunol. 15, 760–770 (2015).

    CAS 

    Google Scholar
     

  • 21.

    Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS 

    Google Scholar
     

  • 22.

    Solar, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that prompts the sort I interferon pathway. Science 339, 786–791 (2013).

    CAS 

    Google Scholar
     

  • 23.

    Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced kind I interferon-dependent antitumor. Immun. Immunogenic Tumors Immun. 41, 843–852 (2014).

    CAS 

    Google Scholar
     

  • 24.

    Baird, J. R. et al. Radiotherapy mixed with novel STING-targeting oligonucleotides leads to regression of established tumors. Most cancers Res. 76, 50–61 (2016).

    CAS 

    Google Scholar
     

  • 25.

    Shae, D. et al. Endosomolytic polymersomes enhance the exercise of cyclic dinucleotide STING agonists to reinforce most cancers immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    CAS 

    Google Scholar
     

  • 26.

    Park, C. G. et al. Prolonged launch of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 10, eaar1916 (2018).


    Google Scholar
     

  • 27.

    Li, L. et al. Hydrolysis of two’3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    CAS 

    Google Scholar
     

  • 28.

    Kato, Okay. et al. Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 9, 4424 (2018).


    Google Scholar
     

  • 29.

    Onyedibe, Okay. I., Wang, M. & Sintim, H. O. ENPP1, an previous enzyme with new features, and small molecule inhibitors-A STING within the story of ENPP1. Molecules 24 (2019).

  • 30.

    Belli, S. I., van Driel, I. R. & Goding, J. W. Identification and characterization of a soluble type of the plasma cell membrane glycoprotein PC-1 (5’-nucleotide phosphodiesterase). Eur. J. Biochem. 217, 421–428 (1993).

    CAS 

    Google Scholar
     

  • 31.

    Fuertes, M. B. et al. Host kind I IFN alerts are required for antitumor CD8+ T cell responses via CD8+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    CAS 

    Google Scholar
     

  • 32.

    Diamond, M. S. et al. Kind I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS 

    Google Scholar
     

  • 33.

    Gulen, M. F. et al. Signalling energy determines proapoptotic features of STING. Nat. Commun. 8, 427 (2017).


    Google Scholar
     

  • 34.

    Cerboni, S. et al. Intrinsic antiproliferative exercise of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).

    CAS 

    Google Scholar
     

  • 35.

    Chen, J. et al. Kind I IFN protects most cancers cells from CD8+ T cell-mediated cytotoxicity after radiation. J. Clin. Make investments. 129, 4224–4238 (2019).


    Google Scholar
     

  • 36.

    Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals uncommon activating antigen-presenting cells important for T cell immunity. Most cancers Cell 26, 938 (2014).

    CAS 

    Google Scholar
     

  • 37.

    Laoui, D. et al. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing results on tumour immunity. Nat. Commun. 7, 13720 (2016).

    CAS 

    Google Scholar
     

  • 38.

    Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell remedy. Most cancers Cell 31, 711–723 e714 (2017).

    CAS 

    Google Scholar
     

  • 39.

    Sabatino, M. et al. Technology of clinical-grade CD19-specific CAR-modified CD8+ reminiscence stem cells for the remedy of human B-cell malignancies. Blood 128, 519–528 (2016).

    CAS 

    Google Scholar
     

  • 40.

    Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T reminiscence stem cells in well being and illness. Nat. Med. 23, 18–27 (2017).

    CAS 

    Google Scholar
     

  • 41.

    Gattinoni, L. Reminiscence T cells formally be part of the stem cell membership. Immunity 41, 7–9 (2014).

    CAS 

    Google Scholar
     

  • 42.

    Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    CAS 

    Google Scholar
     

  • 43.

    Scott, A. C. et al. TOX is a important regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    CAS 

    Google Scholar
     

  • 44.

    Bosi, A. et al. Pure killer cells from malignant pleural effusion are endowed with a decidual-like proangiogenic polarization. J. Immunol. Res. 2018, 2438598 (2018).


    Google Scholar
     

  • 45.

    Vacca, P. et al. NK cells from malignant pleural effusions usually are not anergic however produce cytokines and show sturdy antitumor exercise on short-term IL-2 activation. Eur. J. Immunol. 43, 550–561 (2013).

    CAS 

    Google Scholar
     

  • 46.

    Dahan, R. et al. FcgammaRs modulate the anti-tumor exercise of antibodies focusing on the PD-1/PD-L1 axis. Most cancers Cell 28, 285–295 (2015).

    CAS 

    Google Scholar
     

  • 47.

    Greenwald, R. J., Freeman, G. J. & Sharpe, A. H. The B7 household revisited. Annu Rev. Immunol. 23, 515–548 (2005).


    Google Scholar
     

  • 48.

    Kinter, A. L. et al. The widespread gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J. Immunol. 181, 6738–6746 (2008).

    CAS 

    Google Scholar
     

  • 49.

    Bald, T. et al. Immune cell-poor melanomas profit from PD-1 blockade after focused kind I IFN activation. Most cancers Disco. 4, 674–687 (2014).

    CAS 

    Google Scholar
     

  • 50.

    Dhupar, R. et al. Traits of malignant pleural effusion resident CD8(+) T cells from a heterogeneous assortment of tumors. Int. J. Mol. Sci. 21 (2020).

  • 51.

    DeLong, P. et al. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Most cancers Biol. Ther. 4, 342–346 (2005).

    CAS 

    Google Scholar
     

  • 52.

    Wu, M. F. et al. The M1/M2 spectrum and plasticity of malignant pleural effusion-macrophage in superior lung most cancers. Most cancers Immunol. Immunother. 70, 1435–1450 (2021).

    CAS 

    Google Scholar
     

  • 53.

    Guo, M. et al. Autologous tumor cell-derived microparticle-based focused chemotherapy in lung most cancers sufferers with malignant pleural effusion. Sci. Transl. Med. 11, eaat5690 (2019).

    CAS 

    Google Scholar
     

  • 54.

    Li, J., Yang, Y. & Huang, L. Calcium phosphate nanoparticles with an uneven lipid bilayer coating for siRNA supply to the tumor. J. Management. Launch 158, 108–114 (2012).

    CAS 

    Google Scholar
     

  • 55.

    Liu, Y. et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term management of lung metastases. Nat. Commun. 10, 5108 (2019).

    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *