Gentle–matter coupling in large-area van der Waals superlattices
[ad_1]
Imamoto, H., Sato, F., Imanaka, Okay. & Shimura, M. AlGaAs/GaAs superlattice multi-quantum-well laser diode. Superlattices Microstruct. 5, 167–170 (1989).
Fox, M. & Ispasoiu, R. in Springer Handbook of Digital and Photonic Supplies (eds Kasap, S. & Capper, P.) 1021–1040 (Springer Worldwide Publishing, 2017).
Tredicucci, A., et al. Superlattice quantum cascade lasers. In Proc. In-Aircraft Semiconductor Lasers III, Optoelectronics ’99—Built-in Optoelectronic Gadgets, 23–29 January 1999, San Jose, CA, USA (Eds Choi, H. Okay. & Zory, P. S.) Vol. 3628 (SPIE, 1999).
Withers, F. et al. Gentle-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).
Ploog, Okay. Molecular beam epitaxy of semiconductor interfaces and quantum wells for superior optoelectronic gadgets. Surf. Interface Anal. 12, 279–287 (1988).
Gil, B. & Aulombard, R.-L. (eds) Semiconductor Heteroepitaxy: Development Characterization and Machine Functions. Proc. Worldwide Convention on Semiconductor Heteroepitaxy, Montpellier, France, 4–7 July 1995 (World Scientific, 1996).
Lin, Z. et al. 2D supplies advances: from massive scale synthesis and managed heterostructures to improved characterization strategies, defects and purposes. 2D Mater. 3, 042001 (2016).
Zhao, W. et al. Evolution of digital construction in atomically skinny sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).
Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional supplies. Chem. Rev. 113, 3766–3798 (2013).
Briggs, N. et al. A roadmap for digital grade 2D supplies. 2D Mater. 6, 022001 (2019).
Wang, Q. H., Kalantar-Zadeh, Okay., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metallic dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Jariwala, D., Marks, T. J. & Hersam, M. C. Blended-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).
Masubuchi, S. et al. Autonomous robotic looking out and meeting of two-dimensional crystals to construct van der Waals superlattices. Nat. Commun. 9, 1413 (2018).
Li, P. et al. Infrared hyperbolic metasurface based mostly on nanostructured van der Waals supplies. Science 359, 892–896 (2018).
Atwater, H. A. et al. Supplies challenges for the Starshot lightsail. Nat. Mater. 17, 861–867 (2018).
Liu, X. et al. Robust mild–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional supplies. Nat. Commun. 8, 15251–15251 (2017).
Kang, Okay. et al. Layer-by-layer meeting of two-dimensional supplies into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).
Wang, S., Wang, X. & Warner, J. H. All chemical vapor deposition development of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano 9, 5246–5254 (2015).
Solar, Z. et al. Commentary of the interlayer exciton gases in WSe2-p:WSe2 heterostructures. ACS Photonics 7, 1622–1627 (2020).
Fang, H. et al. Robust interlayer coupling in van der Waals heterostructures constructed from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).
Xu, W. et al. Controlling photoluminescence enhancement and vitality switch in WS2:hBN:WS2 vertical stacks by exact interlayer distances. Small 16, 1905985 (2020).
Xu, W. et al. Figuring out the optimized interlayer separation distance in vertical stacked 2D WS2:hBN:MoS2 heterostructures for exciton vitality switch. Small 14, 1703727 (2018).
Cadiz, F. et al. Excitonic linewidth approaching the homogeneous restrict in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
Wierzbowski, J. et al. Direct exciton emission from atomically skinny transition metallic dichalcogenide heterostructures close to the lifetime restrict. Sci. Rep. 7, 12383 (2017).
Hu, F. et al. Imaging propagative exciton polaritons in atomically skinny WSe2 waveguides. Phys. Rev. B. 100, 121301 (2019).
Gywat, O., Burkard, G. & Loss, D. Biexcitons in coupled quantum dots as a supply of entangled photons. Phys. Rev. B. 65, 205329 (2002).
Chen, J. et al. Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets by way of plasmonic nonlinear fano resonance. Commun. Phys. 2, 80 (2019).
Moore, D. et al. Uncovering topographically hidden options in 2D MoSe2 with correlated potential and optical nanoprobes. npj 2D Mater. Appl. 4, 44 (2020).
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).
Alvertis, A. M. et al. First rules modeling of exciton-polaritons in polydiacetylene chains. J. Chem. Phys. 153, 084103 (2020).
Chubarov, M. et al. Wafer-scale epitaxial development of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).
Xiang, Y. et al. Monolayer MoS2 on sapphire: an azimuthal reflection high-energy electron diffraction perspective. 2D Mater. 8, 025003 (2020).
Pettersson, L. A. A., Roman, L. S. & Inganäs, O. Modeling photocurrent motion spectra of photovoltaic gadgets based mostly on natural skinny movies. J. Appl. Phys. 86, 487–496 (1999).
Burkhard, G. F. & Hoke, E. T. Switch Matrix Optical Modeling (Stanford Univ., 2011).
[ad_2]