Gentle-activated interlayer contraction in two-dimensional perovskites for high-efficiency photo voltaic cells
[ad_1]
Mitzi, D. B., Chondroudis, Ok. & Kagan, C. R. Natural-inorganic electronics. IBM J. Res. Dev. 45, 29–45 (2001).
Tsai, H. et al. Excessive-efficiency two-dimensional Ruddlesden–Popper perovskite photo voltaic cells. Nature 536, 312–316 (2016).
Yuan, M. et al. Perovskite power funnels for environment friendly light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).
Lengthy, G. et al. Spin management in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).
Lu, H. et al. Spin-dependent cost transport by means of 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).
Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).
Cao, D. H., Stoumpos, C. C., Farha, O. Ok., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing supplies for photo voltaic cell purposes. J. Am. Chem. Soc. 137, 7843–7850 (2015).
Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: ideas and guarantees. J. Am. Chem. Soc. 141, 1171–1190 (2019).
Billing, D. G. & Lemmerer, A. Synthesis, characterization and part transitions of the inorganic–natural layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18). New J. Chem. 32, 1736–1746 (2008).
Billing, D. G. & Lemmerer, A. Synthesis and crystal constructions of inorganic–natural hybrids incorporating an fragrant amine with a chiral useful group. CrystEngComm 8, 686–695 (2006).
Mitzi, D. B. in Progress in Inorganic Chemistry Vol. 48 (ed. Karlin, Ok. D.) 1–121 (John Wiley & Sons, 1999).https://doi.org/10.1002/9780470166499.ch1
Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid natural–inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018).
Reyes-Martinez, M. A. et al. Unraveling the elastic properties of (quasi) two-dimensional hybrid perovskites: a joint experimental and theoretical research. ACS Appl. Mater. Interfaces 12, 17881–17892 (2020).
Katan, C., Mercier, N. & Even, J. Quantum and dielectric confinement results in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019).
Spanopoulos, I. et al. Uniaxial enlargement of the 2D Ruddlesden–Popper perovskite household for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019).
Gompel, W. T. M. V. et al. In the direction of 2D layered hybrid perovskites with enhanced performance: introducing charge-transfer complexes through self-assembly. Chem. Commun. 55, 2481–2484 (2019).
Ahn, J. et al. A brand new class of chiral semiconductors: chiral-organic-molecule-incorporating natural–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).
Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).
Soe, C. M. M. et al. New kind of 2D perovskites with alternating cations within the interlayer area, (C(NH2)3)(CH3NH3)nPbnI3n+1: construction, properties, and photovoltaic efficiency. J. Am. Chem. Soc. 139, 16297–16309 (2017).
Tsai, H. et al. Design ideas for digital cost transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018).
Zhang, Y., Solar, M., Zhou, N., Huang, B. & Zhou, H. Digital tunability and mobility anisotropy of quasi-2D perovskite single crystals with different spacer cations. J. Phys. Chem. Lett. 11, 7610–7616 (2020).
Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl Acad. Sci. USA 116, 58–66 (2019).
Leng, Ok. et al. Molecularly skinny two-dimensional hybrid perovskites with tunable optoelectronic properties attributable to reversible floor leisure. Nat. Mater. 17, 908–914 (2018).
Liu, G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites displaying enduring bandgap narrowing. Proc. Natl Acad. Sci. USA 115, 8076–8081 (2018).
Liu, S. et al. Manipulating environment friendly mild emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).
Yu, S. et al. Nonconfinement construction revealed in Dion–Jacobson kind quasi-2D perovskite expedites interlayer cost transport. Small 15, 1905081 (2019).
Blancon, J.-C., Even, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of natural–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).
Svensson, P. H. & Kloo, L. Synthesis, construction, and bonding in polyiodide and metallic iodide-iodide techniques. Chem. Rev. 103, 1649–1684 (2003).
Giovanni, D. et al. The physics of interlayer exciton delocalization in Ruddlesden–Popper lead halide perovskites. Nano Lett. 21, 405–413 (2021).
Santomauro, F. G. et al. Localized holes and delocalized electrons in photoexcited inorganic perovskites: watching every atomic actor by picosecond X-ray absorption spectroscopy. Struct. Dyn. 4, 044002 (2016).
Zu, F.-S. et al. Impression of white mild illumination on the digital and chemical constructions of blended halide and single crystal perovskites. Adv. Decide. Mater. 5, 1700139 (2017).
Blancon, J.-C. et al. Extraordinarily environment friendly inside exciton dissociation by means of edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).
Zhang, Z., Fang, W.-H., Tokina, M. V., Lengthy, R. & Prezhdo, O. V. Fast decoherence suppresses cost recombination in multi-layer 2D halide perovskites: time-domain ab initio evaluation. Nano Lett. 18, 2459–2466 (2018).
Neutzner, S. et al. Exciton-polaron spectral constructions in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2, 064605 (2018).
Ren, H. et al. Environment friendly and steady Ruddlesden–Popper perovskite photo voltaic cell with tailor-made interlayer molecular interplay. Nat. Photon. 14, 154–163 (2020).
Shi, D. et al. Low trap-state density and lengthy provider diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).
Goodman, A. M. & Rose, A. Double extraction of uniformly generated electron−gap pairs from insulators with noninjecting contacts. J. Appl. Phys. 42, 2823–2830 (1971).
Mihailetchi, V. D., Wildeman, J. & Blom, P. W. M. House-charge restricted photocurrent. Phys. Rev. Lett. 94, 126602 (2005).
Ma, C., Shen, D., Ng, T.-W., Lo, M.-F. & Lee, C.-S. 2D perovskites with quick interlayer distance for high-performance photo voltaic cell utility. Adv. Mater. 30, 1800710 (2018).
Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973).
Seager, C. H. & Pike, G. E. Percolation and conductivity: a pc research. II. Phys. Rev. B 10, 1435–1446 (1974).
Britnell, L. et al. Robust light-matter Interactions in heterostructures of atomically skinny movies. Science 340, 1311–1314 (2013).
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional materials nanophotonics. Nat. Photonics 8, 899–907 (2014).
Stoumpos, C. et al. Ruddlesden−Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).
He, X. Oriented progress of ultrathin single crystals of 2D Ruddlesden–Popper hybrid lead iodide perovskite for high-performance photodetector. ACS Appl. Mater. Interfaces 11, 15905–15912 (2019).
Jiang, Z. et al. The devoted high-resolution grazing-incidence X-ray scattering beamline 8-ID-E on the Superior Photon Supply. J. Synchrotron Radiat. 19, 627–636 (2012).
Yager, Ok. G. et al. SciAnalysis. GitHub https://github.com/CFN-softbio/SciAnalysis (2021).
Sanchez-Bajo, R. & Cumbrera, F. L. Using the Pseudo-Voigt operate in variance methodology of X-ray line-broadening evaluation. J. Appl. Crystallogr. 30, 427–430 (1997).
Patterson, A. L. The Scherrer system for X-ray particle dimension willpower. Phys. Rev. 56, 978–982 (2019).
Smiligies, D.-M. Scherrer grain-size evaluation tailored to grazing incidence scattering with space detectors. J. Appl. Crystallogr. 42, 1030–1034 (2009).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations together with change and correlation results. Phys. Rev. 140, A1133–A1138 (1965).
Soler, J. M. et al. The SIESTA methodology for ab initio order-N supplies simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002).
Cooper, V. W. Van der Waals density useful: an acceptable change useful. Phys. Rev. B 81, 161104 (2010).
Hamada, I. & Otani, M. Comparative van der Waals density useful research of graphene on metallic surfaces. Phys. Rev. B 82, 153412 (2010).
Yuk, S. F. et al. In the direction of an correct description of perovskite ferroelectrics: change and correlations results. Sci. Rep. 7, 1738 (2017).
Traore, B. et al. Significance of vacancies and doping in hole-transporting nickel oxide interface with halide perovskites. ACS Appl. Mater. Interface 12, 6633–6640 (2020).
Troullier, N. & Martins, J. L. Environment friendly pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).
Bitzek, E. et al. Structural leisure made easy. Phys. Rev. Lett. 97, 170201 (2006).
[ad_2]