Gentle-activated interlayer contraction in two-dimensional perovskites for high-efficiency photo voltaic cells

[ad_1]

  • 1.

    Mitzi, D. B., Chondroudis, Ok. & Kagan, C. R. Natural-inorganic electronics. IBM J. Res. Dev. 45, 29–45 (2001).

    CAS 

    Google Scholar
     

  • 2.

    Tsai, H. et al. Excessive-efficiency two-dimensional Ruddlesden–Popper perovskite photo voltaic cells. Nature 536, 312–316 (2016).

    CAS 

    Google Scholar
     

  • 3.

    Yuan, M. et al. Perovskite power funnels for environment friendly light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS 

    Google Scholar
     

  • 4.

    Lengthy, G. et al. Spin management in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    CAS 

    Google Scholar
     

  • 5.

    Lu, H. et al. Spin-dependent cost transport by means of 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    CAS 

    Google Scholar
     

  • 6.

    Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).


    Google Scholar
     

  • 7.

    Cao, D. H., Stoumpos, C. C., Farha, O. Ok., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing supplies for photo voltaic cell purposes. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    CAS 

    Google Scholar
     

  • 8.

    Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: ideas and guarantees. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    CAS 

    Google Scholar
     

  • 9.

    Billing, D. G. & Lemmerer, A. Synthesis, characterization and part transitions of the inorganic–natural layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18). New J. Chem. 32, 1736–1746 (2008).

    CAS 

    Google Scholar
     

  • 10.

    Billing, D. G. & Lemmerer, A. Synthesis and crystal constructions of inorganic–natural hybrids incorporating an fragrant amine with a chiral useful group. CrystEngComm 8, 686–695 (2006).

    CAS 

    Google Scholar
     

  • 11.

    Mitzi, D. B. in Progress in Inorganic Chemistry Vol. 48 (ed. Karlin, Ok. D.) 1–121 (John Wiley & Sons, 1999).https://doi.org/10.1002/9780470166499.ch1

  • 12.

    Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid natural–inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018).

    CAS 

    Google Scholar
     

  • 13.

    Reyes-Martinez, M. A. et al. Unraveling the elastic properties of (quasi) two-dimensional hybrid perovskites: a joint experimental and theoretical research. ACS Appl. Mater. Interfaces 12, 17881–17892 (2020).

    CAS 

    Google Scholar
     

  • 14.

    Katan, C., Mercier, N. & Even, J. Quantum and dielectric confinement results in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019).

    CAS 

    Google Scholar
     

  • 15.

    Spanopoulos, I. et al. Uniaxial enlargement of the 2D Ruddlesden–Popper perovskite household for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019).

    CAS 

    Google Scholar
     

  • 16.

    Gompel, W. T. M. V. et al. In the direction of 2D layered hybrid perovskites with enhanced performance: introducing charge-transfer complexes through self-assembly. Chem. Commun. 55, 2481–2484 (2019).


    Google Scholar
     

  • 17.

    Ahn, J. et al. A brand new class of chiral semiconductors: chiral-organic-molecule-incorporating natural–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    CAS 

    Google Scholar
     

  • 18.

    Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    CAS 

    Google Scholar
     

  • 19.

    Soe, C. M. M. et al. New kind of 2D perovskites with alternating cations within the interlayer area, (C(NH2)3)(CH3NH3)nPbnI3n+1: construction, properties, and photovoltaic efficiency. J. Am. Chem. Soc. 139, 16297–16309 (2017).

    CAS 

    Google Scholar
     

  • 20.

    Tsai, H. et al. Design ideas for digital cost transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018).


    Google Scholar
     

  • 21.

    Zhang, Y., Solar, M., Zhou, N., Huang, B. & Zhou, H. Digital tunability and mobility anisotropy of quasi-2D perovskite single crystals with different spacer cations. J. Phys. Chem. Lett. 11, 7610–7616 (2020).

    CAS 

    Google Scholar
     

  • 22.

    Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl Acad. Sci. USA 116, 58–66 (2019).


    Google Scholar
     

  • 23.

    Leng, Ok. et al. Molecularly skinny two-dimensional hybrid perovskites with tunable optoelectronic properties attributable to reversible floor leisure. Nat. Mater. 17, 908–914 (2018).

    CAS 

    Google Scholar
     

  • 24.

    Liu, G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites displaying enduring bandgap narrowing. Proc. Natl Acad. Sci. USA 115, 8076–8081 (2018).

    CAS 

    Google Scholar
     

  • 25.

    Liu, S. et al. Manipulating environment friendly mild emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    CAS 

    Google Scholar
     

  • 26.

    Yu, S. et al. Nonconfinement construction revealed in Dion–Jacobson kind quasi-2D perovskite expedites interlayer cost transport. Small 15, 1905081 (2019).

    CAS 

    Google Scholar
     

  • 27.

    Blancon, J.-C., Even, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of natural–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).

    CAS 

    Google Scholar
     

  • 28.

    Svensson, P. H. & Kloo, L. Synthesis, construction, and bonding in polyiodide and metallic iodide-iodide techniques. Chem. Rev. 103, 1649–1684 (2003).

    CAS 

    Google Scholar
     

  • 29.

    Giovanni, D. et al. The physics of interlayer exciton delocalization in Ruddlesden–Popper lead halide perovskites. Nano Lett. 21, 405–413 (2021).

    CAS 

    Google Scholar
     

  • 30.

    Santomauro, F. G. et al. Localized holes and delocalized electrons in photoexcited inorganic perovskites: watching every atomic actor by picosecond X-ray absorption spectroscopy. Struct. Dyn. 4, 044002 (2016).


    Google Scholar
     

  • 31.

    Zu, F.-S. et al. Impression of white mild illumination on the digital and chemical constructions of blended halide and single crystal perovskites. Adv. Decide. Mater. 5, 1700139 (2017).


    Google Scholar
     

  • 32.

    Blancon, J.-C. et al. Extraordinarily environment friendly inside exciton dissociation by means of edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS 

    Google Scholar
     

  • 33.

    Zhang, Z., Fang, W.-H., Tokina, M. V., Lengthy, R. & Prezhdo, O. V. Fast decoherence suppresses cost recombination in multi-layer 2D halide perovskites: time-domain ab initio evaluation. Nano Lett. 18, 2459–2466 (2018).

    CAS 

    Google Scholar
     

  • 34.

    Neutzner, S. et al. Exciton-polaron spectral constructions in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2, 064605 (2018).

    CAS 

    Google Scholar
     

  • 35.

    Ren, H. et al. Environment friendly and steady Ruddlesden–Popper perovskite photo voltaic cell with tailor-made interlayer molecular interplay. Nat. Photon. 14, 154–163 (2020).

    CAS 

    Google Scholar
     

  • 36.

    Shi, D. et al. Low trap-state density and lengthy provider diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS 

    Google Scholar
     

  • 37.

    Goodman, A. M. & Rose, A. Double extraction of uniformly generated electron−gap pairs from insulators with noninjecting contacts. J. Appl. Phys. 42, 2823–2830 (1971).

    CAS 

    Google Scholar
     

  • 38.

    Mihailetchi, V. D., Wildeman, J. & Blom, P. W. M. House-charge restricted photocurrent. Phys. Rev. Lett. 94, 126602 (2005).

    CAS 

    Google Scholar
     

  • 39.

    Ma, C., Shen, D., Ng, T.-W., Lo, M.-F. & Lee, C.-S. 2D perovskites with quick interlayer distance for high-performance photo voltaic cell utility. Adv. Mater. 30, 1800710 (2018).


    Google Scholar
     

  • 40.

    Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973).


    Google Scholar
     

  • 41.

    Seager, C. H. & Pike, G. E. Percolation and conductivity: a pc research. II. Phys. Rev. B 10, 1435–1446 (1974).

    CAS 

    Google Scholar
     

  • 42.

    Britnell, L. et al. Robust light-matter Interactions in heterostructures of atomically skinny movies. Science 340, 1311–1314 (2013).

    CAS 

    Google Scholar
     

  • 43.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional materials nanophotonics. Nat. Photonics 8, 899–907 (2014).

    CAS 

    Google Scholar
     

  • 44.

    Stoumpos, C. et al. Ruddlesden−Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS 

    Google Scholar
     

  • 45.

    He, X. Oriented progress of ultrathin single crystals of 2D Ruddlesden–Popper hybrid lead iodide perovskite for high-performance photodetector. ACS Appl. Mater. Interfaces 11, 15905–15912 (2019).

    CAS 

    Google Scholar
     

  • 46.

    Jiang, Z. et al. The devoted high-resolution grazing-incidence X-ray scattering beamline 8-ID-E on the Superior Photon Supply. J. Synchrotron Radiat. 19, 627–636 (2012).

    CAS 

    Google Scholar
     

  • 47.

    Yager, Ok. G. et al. SciAnalysis. GitHub https://github.com/CFN-softbio/SciAnalysis (2021).

  • 48.

    Sanchez-Bajo, R. & Cumbrera, F. L. Using the Pseudo-Voigt operate in variance methodology of X-ray line-broadening evaluation. J. Appl. Crystallogr. 30, 427–430 (1997).

    CAS 

    Google Scholar
     

  • 49.

    Patterson, A. L. The Scherrer system for X-ray particle dimension willpower. Phys. Rev. 56, 978–982 (2019).


    Google Scholar
     

  • 50.

    Smiligies, D.-M. Scherrer grain-size evaluation tailored to grazing incidence scattering with space detectors. J. Appl. Crystallogr. 42, 1030–1034 (2009).


    Google Scholar
     

  • 51.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, B864–B871 (1964).


    Google Scholar
     

  • 52.

    Kohn, W. & Sham, L. J. Self-consistent equations together with change and correlation results. Phys. Rev. 140, A1133–A1138 (1965).


    Google Scholar
     

  • 53.

    Soler, J. M. et al. The SIESTA methodology for ab initio order-N supplies simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002).

    CAS 

    Google Scholar
     

  • 54.

    Cooper, V. W. Van der Waals density useful: an acceptable change useful. Phys. Rev. B 81, 161104 (2010).


    Google Scholar
     

  • 55.

    Hamada, I. & Otani, M. Comparative van der Waals density useful research of graphene on metallic surfaces. Phys. Rev. B 82, 153412 (2010).


    Google Scholar
     

  • 56.

    Yuk, S. F. et al. In the direction of an correct description of perovskite ferroelectrics: change and correlations results. Sci. Rep. 7, 1738 (2017).


    Google Scholar
     

  • 57.

    Traore, B. et al. Significance of vacancies and doping in hole-transporting nickel oxide interface with halide perovskites. ACS Appl. Mater. Interface 12, 6633–6640 (2020).

    CAS 

    Google Scholar
     

  • 58.

    Troullier, N. & Martins, J. L. Environment friendly pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    CAS 

    Google Scholar
     

  • 59.

    Bitzek, E. et al. Structural leisure made easy. Phys. Rev. Lett. 97, 170201 (2006).


    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *