Dilution impact for extremely environment friendly multiple-component natural photo voltaic cells

[ad_1]

  • 1.

    Yan, C. et al. Non-fullerene acceptors for natural photo voltaic cells. Nat. Rev. Mater. 3, 18003 (2018).

    CAS 

    Google Scholar
     

  • 2.

    Hou, J., Inganäs, O., Good friend, R. H. & Gao, F. Natural photo voltaic cells primarily based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    CAS 

    Google Scholar
     

  • 3.

    Cheng, P., Li, G., Zhan, X. & Yang, Y. Subsequent-generation natural photovoltaics primarily based on non-fullerene acceptors. Nat. Photon. 12, 131–142 (2018).

    CAS 

    Google Scholar
     

  • 4.

    Bae, S.-H. et al. Printable photo voltaic cells from superior solution-processible supplies. Chem 1, 197–219 (2016).

    CAS 

    Google Scholar
     

  • 5.

    Li, N., McCulloch, I. & Brabec, C. J. Analyzing the effectivity, stability and price potential for fullerene-free natural photovoltaics in a single determine of benefit. Power Environ. Sci. 11, 1355–1361 (2018).

    CAS 

    Google Scholar
     

  • 6.

    Meng, L. et al. Natural and solution-processed tandem photo voltaic cells with 17.3% effectivity. Science 361, 1094–1098 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Zuo, L. et al. Polymer-modified halide perovskite movies for environment friendly and steady planar heterojunction photo voltaic cells. Sci. Adv. 3, e1700106 (2017).


    Google Scholar
     

  • 8.

    Yang, W. S. et al. Iodide administration in formamidinium-lead-halide-based perovskite layers for environment friendly photo voltaic cells. Science 356, 1376–1379 (2017).

    CAS 

    Google Scholar
     

  • 9.

    Li, S. et al. Uneven electron acceptors for high-efficiency and low-energy-loss natural photovoltaics. Adv. Mater. 32, 2001160 (2020).

    CAS 

    Google Scholar
     

  • 10.

    Zhan, L. et al. Over 17% effectivity ternary natural photo voltaic cells enabled by two non-fullerene acceptors working in an alloy-like mannequin. Power Environ. Sci. 13, 635–645 (2020).

    CAS 

    Google Scholar
     

  • 11.

    Lu, L., Kelly, M. A., You, W. & Yu, L. Standing and prospects for ternary natural photovoltaics. Nat. Photon. 9, 491–500 (2015).

    CAS 

    Google Scholar
     

  • 12.

    Yang, L., Yan, L. & You, W. Natural photo voltaic cells past one pair of donor–acceptor: Ternary blends and extra. J. Phys. Chem. Lett. 4, 1802–1810 (2013).

    CAS 

    Google Scholar
     

  • 13.

    Avenue, R. A., Davies, D., Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Origin of the tunable open-circuit voltage in ternary mix bulk heterojunction natural photo voltaic cells. J. Am. Chem. Soc. 135, 986–989 (2013).

    CAS 

    Google Scholar
     

  • 14.

    Khlyabich, P. P., Sezen-Edmonds, M., Howard, J. B., Thompson, B. C. & Lavatory, Y.-L. Formation of natural alloys in ternary-blend photo voltaic cells with two acceptors having energy-level offsets exceeding 0.4 eV. ACS Power Lett. 2, 2149–2156 (2017).

    CAS 

    Google Scholar
     

  • 15.

    Zhang, J. et al. Conjugated polymer–small molecule alloy results in excessive environment friendly ternary natural photo voltaic cells. J. Am. Chem. Soc. 137, 8176–8183 (2015).

    CAS 

    Google Scholar
     

  • 16.

    Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary mix bulk heterojunction photo voltaic cells primarily based on two donor polymers. J. Am. Chem. Soc. 134, 9074–9077 (2012).

    CAS 

    Google Scholar
     

  • 17.

    Chen, Y. et al. Attaining high-performance ternary natural photo voltaic cells via tuning acceptor alloy. Adv. Mater. 29, 1603154 (2017).


    Google Scholar
     

  • 18.

    Zhang, J. et al. Correct dedication of the minimal HOMO offset for environment friendly cost technology utilizing natural semiconducting alloys. Adv. Power Mater. 10, 1903298 (2020).

    CAS 

    Google Scholar
     

  • 19.

    Liu, X., Yan, Y., Yao, Y. & Liang, Z. Ternary mix technique for reaching high-efficiency natural photo voltaic cells with nonfullerene acceptors concerned. Adv. Funct. Mater. 28, 1802004 (2018).


    Google Scholar
     

  • 20.

    Kawamura, Y. et al. 100% phosphorescence quantum effectivity of Ir(III) complexes in natural semiconductor movies. Appl. Phys. Lett. 86, 071104 (2005).


    Google Scholar
     

  • 21.

    Zhang, Q. et al. Environment friendly blue natural light-emitting diodes using thermally activated delayed fluorescence. Nat. Photon. 8, 326 (2014).

    CAS 

    Google Scholar
     

  • 22.

    Bulović, V., Deshpande, R., Thompson, M. E. & Forrest, S. R. Tuning the colour emission of skinny movie molecular natural mild emitting gadgets by the strong state solvation impact. Chem. Phys. Lett. 308, 317–322 (1999).


    Google Scholar
     

  • 23.

    Madigan, C. F. & Bulović, V. Strong state solvation in amorphous natural skinny movies. Phys. Rev. Lett. 91, 247403 (2003).


    Google Scholar
     

  • 24.

    Northey, T., Stacey, J. & Penfold, T. J. The position of strong state solvation on the cost switch state of a thermally activated delayed fluorescence emitter. J. Mater. Chem. C 5, 11001–11009 (2017).

    CAS 

    Google Scholar
     

  • 25.

    Shi, X. et al. Design of a extremely crystalline low-band hole fused-ring electron acceptor for high-efficiency photo voltaic cells with low vitality loss. Chem. Mater. 29, 8369–8376 (2017).

    CAS 

    Google Scholar
     

  • 26.

    Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and functions. Chem. Commun. 29, 4332–4353 (2009).


    Google Scholar
     

  • 27.

    Park, S. Okay. et al. Tailored extremely luminescent and ambipolar transporting natural combined stacked charge-transfer crystals: an isometric donor–acceptor strategy. J. Am. Chem. Soc. 135, 4757–4764 (2013).

    CAS 

    Google Scholar
     

  • 28.

    Slifkin, M. A. Cost switch and excimer formation. Nature 200, 766–767 (1963).

    CAS 

    Google Scholar
     

  • 29.

    Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based natural photo voltaic cells. Nat. Power 2, 17053 (2017).

    CAS 

    Google Scholar
     

  • 30.

    Liu, X., Li, Y., Ding, Okay. & Forrest, S. Power loss in natural photovoltaics: nonfullerene versus fullerene acceptors. Phys. Rev. Appl. 11, 024060 (2019).

    CAS 

    Google Scholar
     

  • 31.

    de Jong, M., Seijo, L., Meijerink, A. & Rabouw, F. T. Resolving the anomaly within the relation between Stokes shift and Huang–Rhys parameter. Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).

    CAS 

    Google Scholar
     

  • 32.

    Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).

    CAS 

    Google Scholar
     

  • 33.

    Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The position of the third element in ternary natural photo voltaic cells. Nat. Rev. Mater. 4, 229–242 (2019).


    Google Scholar
     

  • 34.

    Rau, U., Clean, B., Müller, T. C. M. & Kirchartz, T. Effectivity potential of photovoltaic supplies and gadgets unveiled by detailed-balance evaluation. Phys. Rev. Appl. 7, 044016 (2017).


    Google Scholar
     

  • 35.

    Wang, Y. et al. Optical gaps of natural photo voltaic cells as a reference for evaluating voltage losses. Adv. Power Mater. 8, 1801352 (2018).


    Google Scholar
     

  • 36.

    Baran, D. et al. Lowering the effectivity–stability–value hole of natural photovoltaics with extremely environment friendly and steady small molecule acceptor ternary photo voltaic cells. Nat. Mater. 16, 363–369 (2017).

    CAS 

    Google Scholar
     

  • 37.

    Liu, Y., Zuo, L., Shi, X., Jen, A. Okay. Y. & Ginger, D. S. Unexpectedly gradual but environment friendly picosecond to nanosecond photoinduced hole-transfer happens in a polymer/nonfullerene acceptor natural photovoltaic mix. ACS Power Lett. 3, 2396–2403 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Cha, H. et al. Affect of mix morphology and energetics on cost separation and recombination dynamics in natural photo voltaic cells incorporating a nonfullerene acceptor. Adv. Funct. Mater. 28, 1704389 (2018).


    Google Scholar
     

  • 39.

    Ziffer, M. E. et al. Lengthy-lived, non-geminate, radiative recombination of photogenerated costs in a polymer/small-molecule acceptor photovoltaic mix. J. Am. Chem. Soc. 140, 9996–10008 (2018).

    CAS 

    Google Scholar
     

  • 40.

    Szarko, J. M. et al. Photovoltaic operate and exciton/cost switch dynamics in a extremely environment friendly semiconducting copolymer. Adv. Funct. Mater. 24, 10–26 (2014).

    CAS 

    Google Scholar
     

  • 41.

    Zhang, M., Wang, H., Tian, H., Geng, Y. & Tang, C. W. Bulk heterojunction photovoltaic cells with low donor focus. Adv. Mater. 23, 4960–4964 (2011).

    CAS 

    Google Scholar
     

  • 42.

    Bässler, H. Cost transport in disordered natural photoconductors a Monte Carlo simulation examine. Phys. Standing Solidi B 175, 15–56 (1993).


    Google Scholar
     

  • 43.

    Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973).


    Google Scholar
     

  • 44.

    Lim, D. U., Kim, S., Choi, Y. J., Jo, S. B. & Cho, J. H. Percolation-limited twin cost transport in vertical p–n heterojunction Schottky barrier transistors. Nano Lett. 20, 3585–3592 (2020).

    CAS 

    Google Scholar
     

  • 45.

    Cui, Y. et al. Single-junction natural photovoltaic cells with approaching 18% effectivity. Adv. Mater. 32, 1908205 (2020).

    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *