Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3

[ad_1]

  • 1.

    Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Balents, L., Dean, C. R., Efetov, D. Ok. & Younger, A. F. Superconductivity and robust correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal all the way down to the monolayer restrict. Nature 546, 270–273 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Burch, Ok. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals supplies. Nature 563, 47–52 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure units. Science 363, eaav4450 (2019).

  • 8.

    Mak, Ok. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).

    Article 

    Google Scholar
     

  • 9.

    Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, Ok. S. Magnetic 2D supplies and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Hejazi, Ok., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions within the Moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Akram, M. & Erten, O. Skyrmions in twisted van der Waals magnets. Phys. Rev. B 103, L140406 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Xiao, F., Chen, Ok. & Tong, Q. Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Res. 3, 013027 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking area wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Li, T. et al. Stress-controlled interlayer magnetism in atomically skinny CrI3. Nat. Mater. 18, 1303–1308 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Tune, T. et al. Switching 2D magnetic states through strain tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Chen, W. et al. Direct remark of van der Waals stacking-dependent interlayer magnetism. Science 366, 983 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Klein, D. R. et al. Enhancement of interlayer alternate in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255–1260 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Li, S. et al. Magnetic-field-induced quantum part transitions in a van der Waals magnet. Phys. Rev. 10, 011075 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Yoo, H. et al. Atomic and digital reconstruction on the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Kim, Ok. et al. van der Waals heterostructures with excessive accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Chung, T.-F., Xu, Y. & Chen, Y. P. Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau stage crossing. Phys. Rev. B 98, 035425 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Jiang, S., Li, L., Wang, Z., Mak, Ok. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Huang, B. et al. Electrical management of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Jiang, S., Shan, J. & Mak, Ok. F. Electrical-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. 8, 041028 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Gross sales, B. C. Coupling of crystal construction and magnetism within the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

  • 31.

    Zener, C. Classical concept of the temperature dependence of magnetic anisotropy vitality. Phys. Rev. 96, 1335–1337 (1954).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Niitsu, Ok., Tanigaki, T., Harada, Ok. & Shindo, D. Temperature dependence of 180° area wall width in iron and nickel movies analyzed utilizing electron holography. Appl. Phys. Lett. 113, 222407 (2018).

    Article 

    Google Scholar
     

  • 33.

    Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metallic dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Tate, M. W. et al. Excessive dynamic vary pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Knowledge processing for atomic decision electron vitality loss spectroscopy. Microsc. Microanal. 18, 667–675 (2012).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *