An outline and bibliometric evaluation on the colorectal most cancers remedy by magnetic functionalized nanoparticles for the responsive and focused drug supply | Journal of Nanobiotechnology
[ad_1]
Ulbrich Okay, Holá Okay, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Focused drug supply with polymers and magnetic nanoparticles: covalent and noncovalent approaches, launch management, and scientific research. Chem Rev. 2016. https://doi.org/10.1021/acs.chemrev.5b00589.
Ma J, Jemal A, Fedewa SA, Islami F, Lichtenfeld JL, Wender RC, et al. The American Most cancers Society 2035 problem purpose on most cancers mortality discount. CA Most cancers J Clin. 2019;69:351–62. https://doi.org/10.3322/caac.21564@10.3322/(ISSN)1542-4863.ACS_Cancer_Control_Blueprints.
Lammers T, Kiessling F, Hennink WE, Storm G. Drug focusing on to tumors: ideas, pitfalls and (pre-) scientific progress. J Management Launch. 2012;161:175–87.
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug supply. J Drug Goal. 2016. https://doi.org/10.3109/1061186X.2015.1051049.
Gupta PK. Drug focusing on in most cancers chemotherapy: a scientific perspective. J Pharm Sci. 1990;79(11):949–62.
Partl R, Regitnig P, Tauber G, Pötscher M, Bjelic-Radisic V, Kapp KS. Radiation-induced morphea—a uncommon however extreme late impact of adjuvant breast irradiation: case report and evaluation of the literature | Strahleninduzierte Morphea – eine seltene, aber schwere späte Folge der adjuvanten Brustbestrahlung: Fallbericht und Literat. Strahlentherapie und Onkol. 2018;194:1060–5.
Allen TM. Ligand-targeted therapeutics in anticancer remedy. Nat Rev Most cancers. 2002;2(10):750–63.
Zhang X, Wu F, Males Okay, Huang R, Zhou B, Zhang R, et al. Modified Fe3O4 magnetic nanoparticle supply of CpG inhibits tumor development and spontaneous pulmonary metastases to reinforce immunotherapy. Nanoscale Res Lett. 2018;13:240. https://doi.org/10.1186/s11671-018-2661-8.
Batra H, Pawar S, Bahl D. Curcumin together with anticancer medicine: a nanomedicine evaluation. Pharmacol Res. 2019;139:91–105.
Gupta PK, Gahtori R, Govarthanan Okay, Sharma V, Pappuru S, Pandit S, et al. Latest tendencies in biodegradable polyester nanomaterials for most cancers remedy. Mater Sci Eng C. 2021;24: 112198.
Liu F, Wu D, Kamm RD, Chen Okay. Evaluation of nanoprobe penetration by way of a lipid bilayer. Biochim Biophys Acta Biomembr. 2013;1828:1667–73.
Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR. Perspective of Fe3O4 nanoparticles position in biomedical purposes. Biochem Res Int. 2016. https://doi.org/10.1155/2016/7840161.
Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale EN. Publication tendencies in drug supply and magnetic nanoparticles. Nanoscale Res Lett. 2019. https://doi.org/10.1186/s11671-019-2994-y.
Sanadgol N, Wackerlig J. Developments of sensible drug-delivery programs primarily based on magnetic molecularly imprinted polymers for focused most cancers remedy: a brief evaluation. Pharmaceutics. 2020;12:831.
Darroudi M, Ranjbar S, Esfandiar M, Khoshneviszadeh M, Hamzehloueian M, Khoshneviszadeh M, et al. Synthesis of novel triazole included thiazolone motifs having promising antityrosinase exercise by way of inexperienced nanocatalyst CuI-Fe3O4@SiO2 (TMS-EDTA). Appl Organomet Chem. 2020. https://doi.org/10.1002/aoc.5962.
Wang Z, Li J, Tian X, Wang X, Yu Y, Owusu KA, et al. Porous nickel–iron selenide nanosheets as extremely environment friendly electrocatalysts for oxygen evolution response. ACS Appl Mater Interfaces. 2016;8:19386–92. https://doi.org/10.1021/acsami.6b03392.
Roopashree B, Gayathri V, Mukund H. Synthesis, characterization, and organic actions of zinc, cadmium, copper, and nickel complexes containing meta -aminophenyl benzimidazole. J Coord Chem. 2012;65:1354–70.
Snoussi Y, Bastide S, Abderrabba M, Chehimi MM. Sonochemical synthesis of Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd: a core/double shell nanocomposite for catalytic purposes. Ultrason Sonochem. 2018;41:551–61. https://doi.org/10.1016/j.ultsonch.2017.10.021.
Mehrafrooz B, Pedram MZ, Ghafar-Zadeh E. An improved technique for magnetic nanocarrier drug supply throughout the cell membrane. Sensors. 2018;18:381.
Pathak A, Patnaik S, Gupta KC. Latest tendencies in non-viral vector-mediated gene supply. Biotechnol J. 2009;4(11):1559–72.
Sultana J, Sarma D. Ag-catalyzed azide-alkyne cycloaddition: copper free approaches for synthesis of 1,4-disubstituted 1,2,3-triazoles. Catal Rev Sci Eng. 2020;62:96–117. https://doi.org/10.1080/01614940.2019.1673443.
Barahuie F, Dorniani D, Saifullah B, Gothai S, Hussein MZ, Pandurangan AK, et al. Sustained launch of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int J Nanomedicine. 2017;12:2361–72.
Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH, Parvin N. Present tendencies in chemical modifications of magnetic nanoparticles for focused drug supply in most cancers chemotherapy. Drug Metab Rev. 2020;52(1):205–24.
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a evaluation of FDA-approved supplies and scientific trials to this point. Pharm Res. 2016. https://doi.org/10.1007/s11095-016-1958-5.
Anselmo AC, Mitragotri S. Nanoparticles within the clinic: an replace. Bioeng Transl Med. 2019;4: e10143. https://doi.org/10.1002/btm2.10143.
Kievit FM, Zhang M. Most cancers nanotheranostics: enhancing imaging and remedy by focused supply throughout organic limitations. Adv Mater. 2011. https://doi.org/10.1002/adma.201102313.
Hofmann-Amtenbrink M, Grainger DW, Hofmann H. Nanoparticles in drugs: present challenges going through inorganic nanoparticle toxicity assessments and standardizations. Nanomed Nanotechnol Biol Med. 2015;11(7):1689–94.
Micha JP, Goldstein BH, Birk CL, Rettenmaier MA, Brown JV. Abraxane within the remedy of ovarian most cancers: the absence of hypersensitivity reactions. Gynecol Oncol. 2006;100:437–8.
Vissers C, Ming GL, Tune H. Nanoparticle expertise and stem cell remedy staff up towards neurodegenerative issues. Adv Drug Deliv Rev. 2019;148:239–51.
Das RK, Pramanik A, Majhi M, Mohapatra S. Magnetic mesoporous silica gated with doped carbon dot for site-specific drug supply, fluorescence, and MR imaging. Langmuir. 2018;34:5253–62. https://doi.org/10.1021/acs.langmuir.7b04268.
Tomitaka A, Kaushik A, Kevadiya BD, Mukadam I, Gendelman HE, Khalili Okay, et al. Floor-engineered multimodal magnetic nanoparticles to handle CNS ailments. Drug Discov Immediately. 2019;24(3):873–82.
Barrios-Gumiel A, Sepúlveda-Crespo D, Jiménez JL, Gómez R, Muñoz-Fernández MÁ, de la Mata FJ. Dendronized magnetic nanoparticles for HIV-1 seize and fast diagnostic. Colloids Surf B Biointerfaces. 2019;181:360–8.
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based methods for remedy of ocular illness. Acta Pharm Sin B. 2017;7(3):281–91.
El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH. Magnetic nanoparticles-based drug and gene supply programs for the remedy of pulmonary ailments. Nanomedicine. 2017. https://doi.org/10.2217/nnm-2016-0341.
Cho Okay, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug supply in most cancers. Clin Most cancers Res. 2008;14(5):1310–6.
Liao H, Nehl CL, Hafner JH. Biomedical purposes of plasmon resonant steel nanoparticles. Nanomedicine. 2006;1:201–8.
Faraji AH, Wipf P. Nanoparticles in mobile drug supply. Bioorg Med Chem. 2009;17:2950–62.
Cherkasov VR, Mochalova EN, Babenyshev AV, Rozenberg JM, Sokolov IL, Nikitin MP. Antibody-directed metal-organic framework nanoparticles for focused drug supply. Acta Biomater. 2020;103:223–36.
Sisay B, Abrha S, Yilma Z, Assen A, Molla F, Tadese E, et al. Most cancers nanotheranostics: a brand new paradigm of simultaneous analysis and remedy. J Drug Deliv Ther. 2014;4(5):79–86.
Yang C, Merlin D. Can naturally occurring nanoparticle-based focused drug supply successfully deal with inflammatory bowel illness? Skilled Opin Drug Deliv. 2020. https://doi.org/10.1080/17425247.2020.1698543.
Gisbert-Garzarán M, Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for the remedy of advanced bone ailments: bone most cancers, bone an infection and osteoporosis. Pharmaceutics. 2020;12:83.
Albinali KE, Zagho MM, Deng Y, Elzatahry AA. A perspective on magnetic core–shell carriers for responsive and focused drug supply programs. Int J Nanomed. 2019;14:1707–23.
Lockwood NA, De Pablo JJ, Abbott NL. Affect of surfactant tail branching and group on the orientation of liquid crystals at aqueous–liquid crystal interfaces. Langmuir. 2005;21:6805–14.
Akhavan P, Ebrahim NA, Fetrati MA, Pezeshkan A. Main tendencies in data administration analysis: a bibliometric examine. Scientometrics. 2016;107:1249–64. https://doi.org/10.1007/s11192-016-1938-x.
Niu B, Hong S, Yuan J, Peng S, Wang Z, Zhang X. International tendencies in sediment-related analysis in earth science throughout 1992–2011: a bibliometric evaluation. Scientometrics. 2014;98:511–29. https://doi.org/10.1007/s11192-013-1065-x.
Aghaei Chadegani A, Salehi H, Md Yunus MM, Farhadi H, Fooladi M, Farhadi M, et al. A comparability between two predominant tutorial literature collections: net of science and scopus databases. Asian Soc Sci. 2013;9:18–26. https://doi.org/10.5539/ass.v9n5p18.
van Eck NJ, Waltman L, Jan van Eck N, Waltman L, van Eck NJ, Waltman L. Textual content mining and visualization utilizing VOSviewer. 2011. arxiv:1109.2058.
van Eck NJ, Waltman L. Software program survey: VOSviewer, a pc program for bibliometric mapping. Scientometrics. 2010;84:523–38.
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. International patterns and tendencies in colorectal most cancers incidence and mortality. Intestine. 2017;66:683–91.
Siegel RL, Torre LA, Soerjomataram I, Hayes RB, Bray F, Weber TK, et al. International patterns and tendencies in colorectal most cancers incidence in younger adults. Intestine. 2019;68:2179–85. https://doi.org/10.1136/gutjnl-2019-319511.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.
Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal most cancers. Nat Med. 2015;21:1350–6.
Siegel RL, Miller KD, Jemal A. Most cancers statistics, 2019. CA Most cancers J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551.
Bhaskaran NA, Kumar L. Treating colon cancers with a non-conventional but strategic method: an outline of varied nanoparticulate programs. J Management Launch. 2021;336:16–39.
Kreuter J. Nanoparticles—a historic perspective. Int J Pharm. 2007;331(1):1–10.
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Good nanocarrier-based drug supply programs for most cancers remedy and toxicity research: a evaluation. J Adv Res. 2019;15:1–18.
Mateescu MA, Ispas-Szabo P, Assaad E. Self-assembling in pure, artificial, and hybrid supplies with purposes in managed drug supply. Management Drug Deliv. Woodhead Publishing: Cambridge, UK. 2015; pp 163–223.
Sung YK, Kim SW. Latest advances in polymeric drug supply programs. Biomater Res. 2020. https://doi.org/10.1186/s40824-020-00190-7.
Sharma D, Hussain CM. Good nanomaterials in pharmaceutical evaluation. Arab J Chem. 2020;13(1):3319–43.
Bae KH, Chung HJ, Park TG. Nanomaterials for most cancers remedy and imaging. Mol Cells. 2011;31(4):295–302.
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Present tendencies and challenges in most cancers administration and remedy utilizing designer nanomaterials. Nano Converg. 2019;6(1):1–30.
Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, et al. Surfactant results on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem C. 2014;118:16209–17. https://doi.org/10.1021/jp5037266.
Bhardwaj A, Jain N, Parekh Okay. Investigating the impact of outer layer of magnetic particles on cervical most cancers cells HeLa by magnetic fluid hyperthermia. Most cancers Nanotechnol. 2021;12:7. https://doi.org/10.1186/s12645-021-00076-w.
Rajan A, Sharma M, Sahu NK. Assessing magnetic and inductive thermal properties of varied surfactants functionalised Fe3O4 nanoparticles for hyperthermia. Sci Rep. 2020;10:1–15. https://doi.org/10.1038/s41598-020-71703-6.
Simionato F, Zecchetto C, Merz V, Cavaliere A, Casalino S, Gaule M, et al. A section II examine of liposomal irinotecan with 5-fluorouracil, leucovorin and oxaliplatin in sufferers with resectable pancreatic most cancers: the nITRO trial. Ther Adv Med Oncol. 2020;12: 175883592094796. https://doi.org/10.1177/1758835920947969.
Zoetemelk M, Ramzy GM, Rausch M, Nowak-Sliwinska P. Drug–drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its exercise in colorectal carcinoma remedy. Molecules. 2020;25:2614.
Rostamizadeh S, Nojavan M, Aryan R, Isapoor E, Azad M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: an environment friendly magnetic nanocatalyst and recyclable response media for the synthesis of quinazolin-4(3H)-one derivatives. J Mol Catal A Chem. 2013;374–375:102–10. https://doi.org/10.1016/j.molcata.2013.04.002.
Asgharnasl S, Eivazzadeh-Keihan R, Radinekiyan F, Maleki A. Preparation of a novel magnetic bionanocomposite primarily based on factionalized chitosan by creatine and its utility within the synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1,8-dioxo-decahydroacridine derivatives. Int J Biol Macromol. 2020;144:29–46.
Rabenstein DL, Theriault Y. A nuclear magnetic resonance examine of the kinetics and equilibria for the oxidation of penicillamine and N-acetylpenicillamine by glutathione disulfide. Can J Chem. 1984;62:1672–80. https://doi.org/10.1139/v84-287.
Kumar S, Singhal N, Singh RK, Gupta P, Singh R, Jain SL. Twin catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide utilizing isobutyraldehyde because the sacrificial reductant. Dalton Trans. 2015;44:11860–6.
Xu Z, Hou Y, Solar S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc. 2007;129:8698–9. https://doi.org/10.1021/ja073057v.
Williams PS, Carpino F, Zborowski M. Magnetic nanoparticle drug carriers and their examine by quadrupole magnetic field-flow fractionation. Mol Pharm. 2009;6(5):1290–306.
Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111:3036–75. https://doi.org/10.1021/cr100230z.
Rafiee Z, Panji Z. Synthesis and characterization of optically lively magnetic PAI/Fe3O4 nanocomposites. Amino Acids. 2018;50:1007–12.
Ahmad A, Gupta A, Ansari MM, Vyawahare A, Jayamurugan G, Khan R. Hyperbranched polymer-functionalized magnetic nanoparticle-mediated hyperthermia and niclosamide bimodal remedy of colorectal most cancers cells. ACS Biomater Sci Eng. 2020;6:1102–11.
Mu X, Qiao J, Qi L, Liu Y, Ma H. Building of a d-amino acid oxidase reactor primarily based on magnetic nanoparticles modified by a reactive polymer and its utility in screening enzyme inhibitors. ACS Appl Mater Interfaces. 2014;6:12979–87. https://doi.org/10.1021/am502901b.
Boncel S, Herman AP, Budniok S, Jȩdrysiak RG, Jakóbik-Kolon A, Skepper JN, et al. In vitro focusing on and selective killing of T47D breast most cancers cells by purpurin and 5-fluorouracil anchored to magnetic CNTs: nitrene-based functionalization versus uptake, cytotoxicity, and intracellular destiny. ACS Biomater Sci Eng. 2016;2:1273–85.
Han G-C, Ouyang Y, Lengthy X-Y, Zhou Y, Li M, Liu Y-N, et al. (Carboxymethyl-dextran)-modified magnetic nanoparticles conjugated to octreotide for MRI purposes. Eur J Inorg Chem. 2010. https://doi.org/10.1002/ejic.201000715.
Cheng X-C, Kuai H-W. Synthesis, characterization, and magnetic properties of two new Co(II) coordination polymers with a carboxylate- and benzimidazolylcontaining ligand. Zeitschrift fur Naturforsch B. 2012;67:1255–62.
Zhu L, Ma J, Jia N, Zhao Y, Shen H. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity research. Colloids Surf B Biointerfaces. 2009;68:1–6.
Goon IY, Zhang C, Lim M, Gooding JJ, Amal R. Managed fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+. Langmuir. 2010;26:12247–52. https://doi.org/10.1021/la101196r.
Kondo A, Fukuda H. Preparation of thermo-sensitive magnetic hydrogel microspheres and utility to enzyme immobilization. J Ferment Bioeng. 1997;84:337–41.
Alavi M, Karimi N, Safaei M. Software of varied kinds of liposomes in drug supply programs. Adv Pharm Bull. 2017;7(1):3–9.
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and purposes. Nanoscale Res Lett. 2013;8:102.
Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, et al. Nanoparticles and its biomedical purposes in well being and ailments: particular concentrate on drug supply. Environ Sci Pollut Res. 2020;27:19151–68. https://doi.org/10.1007/s11356-019-05211-0.
Si Y, Chen M, Wu L. Syntheses and biomedical purposes of hole micro-/nano-spheres with large-through-holes. Chem Soc Rev. 2016;45(3):690–714.
Skrabalak SE, Chen J, Solar Y, Lu X, Au L, Cobley CM, et al. Gold nanocages: synthesis, properties, and purposes. Acc Chem Res. 2008;41:1587–95.
Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of motion and scientific methods. Nat Rev Most cancers. 2003;3(5):330–8.
Kaczirek Okay. ASCO 2016—replace colorectal liver metastases. Memo Magazine Eur Med Oncol. 2017;2017:103–5.
Machover D, Goldschmidt E, Chollet P, Metzger G, Zittoun J, Marquet J, et al. Therapy of superior colorectal and gastric adenocarcinomas with 5-fluorouracil and high-dose folinic acid. J Clin Oncol. 1986;4:685–96.
Clares B, Biedma-Ortiz RA, Sáez-Fernández E, Prados JC, Melguizo C, Cabeza L, et al. Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for mixed hyperthermia and chemotherapy towards colon most cancers. Eur J Pharm Biopharm. 2013;85:329–38.
Anirudhan TS, Christa J, Binusreejayan. pH and magnetic area delicate folic acid conjugated protein–polyelectrolyte advanced for the managed and focused supply of 5-fluorouracil. J Ind Eng Chem. 2018;57:199–207.
Garcia-Pinel B, Jabalera Y, Ortiz R, Cabeza L, Jimenez-Lopez C, Melguizo C, et al. Biomimetic magnetoliposomes as oxaliplatin nanocarriers: in vitro examine for potential utility in colon most cancers. Pharmaceutics. 2020;12:1–20.
Ebadi M, Saifullah B, Buskaran Okay, Hussein MZ, Fakurazi S. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine. 2019;14:6661–78.
Garcia-Pinel B, Ortega-Rodríguez A, Porras-Alcalá C, Cabeza L, Contreras-Cáceres R, Ortiz R, et al. Magnetically lively pNIPAM nanosystems as temperature-sensitive biocompatible constructions for managed drug supply. Artif Cells Nanomed Biotechnol. 2020;48:1022–35.
Golbaz R, Khoei S, Khoee S, Shirvalilou S, Safa M, Mahdavi SRSR, et al. Apoptosis pathway within the mixed remedy of x-ray and 5-FU-loaded triblock copolymer-coated magnetic nanoparticles. Nanomedicine. 2020;15:2255–70.
Işıklan N, Polat S. Synthesis and characterization of thermo/pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) coated magnetic nanoparticles. Int J Biol Macromol. 2020;164:4499–515.
Mohammadi S, Khoei S, Mahdavi SR. The mix impact of poly(lactic-co-glycolic acid) coated iron oxide nanoparticles as 5-fluorouracil service and X-ray on the extent of DNA damages within the DU 145 human prostate carcinoma cell line. J Bionanosci. 2012;6:23–7.
Asadi L, Shirvalilou S, Khoee S, Khoei S. Cytotoxic impact of 5-fluorouracil-loaded polymer-coated magnetite nanographene oxide mixed with radiofrequency. Anticancer Brokers Med Chem. 2018;18:1148–55.
Dabaghi M, Quaas R, Hilger I. The remedy of heterotopic human colon xenograft tumors in mice with 5-fluorouracil hooked up to magnetic nanoparticles together with magnetic hyperthermia is extra environment friendly than both remedy alone. Cancers. 2020;12:1–22.
Shakeri-Zadeh A, Shiran MBM-B, Khoee S, Sharifi AMAM, Ghaznavi H, Khoei S. A brand new magnetic nanocapsule containing 5-fluorouracil: in vivo drug launch, antitumor, and pro-apoptotic results on CT26 cells allograft mannequin. J Biomater Appl. 2014;29:548–56.
Nemani KV, Ennis RC, Griswold KE, Gimi B. Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug remedy. J Biotechnol. 2015;203:32–40.
Rice LB. Federal funding for the examine of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–81. https://doi.org/10.1086/533452.
Eynali S, Khoei S, Khoee S, Esmaelbeygi E. Analysis of the cytotoxic results of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon most cancers cell line HT-29. Int J Hyperth. 2017;33:327–35.
Hati S, Kumar Dutta P, Dutta S, Munshi P, Sen S. Accessing benzimidazoles through a hoop distortion technique: an oxone mediated tandem response of 2-aminobenzylamines. Org Lett. 2016;18:3090–3.
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, et al. Oxaliplatin–biomimetic magnetic nanoparticle assemblies for colon cancer-targeted chemotherapy: an in vitro examine. Pharmaceutics. 2019;11(8):395.
Tabasi H, Hamed Mosavian MT, Sabouri Z, Khazaei M, Darroudi M. pH-responsive and CD44-targeting by Fe3O4/MSNs-NH2 nanocarriers for oxaliplatin loading and colon most cancers remedy. Inorg Chem Commun. 2021;125: 108430.
Liu D, Li X, Chen C, Li C, Zhou C, Zhang W, et al. Goal-specific supply of oxaliplatin to HER2-positive gastric most cancers cells in vivo utilizing oxaliplatin-Au-Fe3O4-herceptin nanoparticles. Oncol Lett. 2018;15:8079–87. https://doi.org/10.3892/ol.2018.8323/summary.
Gogineni VR, Maddirela DR, Park W, Jagtap JM, Parchur AK, Sharma G, et al. Localized and triggered launch of oxaliplatin for the remedy of colorectal liver metastasis. J Most cancers. 2020;11:6982–91.
Dai J, Chen Y, Gong Y, Wei J, Cui X, Yu H, et al. The efficacy and security of irinotecan±bevacizumab in contrast with oxaliplatin±bevacizumab for metastatic colorectal most cancers: a meta-analysis. Med. 2019. https://doi.org/10.1097/MD.0000000000017384.
Sengupta S, Khatua C, Balla VK. In vitro carcinoma remedy utilizing magnetic nanocarriers beneath ultrasound and magnetic fields. ACS Omega. 2018;3:5459–69.
Serrà A, Gimeno N, Gómez E, Mora M, Sagristá ML, Vallés E. Magnetic mesoporous nanocarriers for drug supply with improved therapeutic efficacy. Adv Funct Mater. 2016;26:6601–11. https://doi.org/10.1002/adfm.201601473.
Wu D, Zhu L, Li Y, Wang H, Xu S, Zhang X, et al. Superparamagnetic chitosan nanocomplexes for colorectal tumor-targeted supply of irinotecan. Int J Pharm. 2020;584: 119394.
Walko CM, Lindley C. Capecitabine: a evaluation. Clin Ther. 2005;27(1):23–44.
Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Hosseinkhani H. In-vitro evaluation of magnetic dextran–spermine nanoparticles for capecitabine supply to cancerous cells. Iran J Pharm Res. 2017;16:1320.
[ad_2]