An outline and bibliometric evaluation on the colorectal most cancers remedy by magnetic functionalized nanoparticles for the responsive and focused drug supply | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Ulbrich Okay, Holá Okay, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Focused drug supply with polymers and magnetic nanoparticles: covalent and noncovalent approaches, launch management, and scientific research. Chem Rev. 2016. https://doi.org/10.1021/acs.chemrev.5b00589.

    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Ma J, Jemal A, Fedewa SA, Islami F, Lichtenfeld JL, Wender RC, et al. The American Most cancers Society 2035 problem purpose on most cancers mortality discount. CA Most cancers J Clin. 2019;69:351–62. https://doi.org/10.3322/caac.21564@10.3322/(ISSN)1542-4863.ACS_Cancer_Control_Blueprints.

    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Lammers T, Kiessling F, Hennink WE, Storm G. Drug focusing on to tumors: ideas, pitfalls and (pre-) scientific progress. J Management Launch. 2012;161:175–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug supply. J Drug Goal. 2016. https://doi.org/10.3109/1061186X.2015.1051049.

    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Gupta PK. Drug focusing on in most cancers chemotherapy: a scientific perspective. J Pharm Sci. 1990;79(11):949–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Partl R, Regitnig P, Tauber G, Pötscher M, Bjelic-Radisic V, Kapp KS. Radiation-induced morphea—a uncommon however extreme late impact of adjuvant breast irradiation: case report and evaluation of the literature | Strahleninduzierte Morphea – eine seltene, aber schwere späte Folge der adjuvanten Brustbestrahlung: Fallbericht und Literat. Strahlentherapie und Onkol. 2018;194:1060–5.


    Google Scholar
     

  • 7.

    Allen TM. Ligand-targeted therapeutics in anticancer remedy. Nat Rev Most cancers. 2002;2(10):750–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Zhang X, Wu F, Males Okay, Huang R, Zhou B, Zhang R, et al. Modified Fe3O4 magnetic nanoparticle supply of CpG inhibits tumor development and spontaneous pulmonary metastases to reinforce immunotherapy. Nanoscale Res Lett. 2018;13:240. https://doi.org/10.1186/s11671-018-2661-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Batra H, Pawar S, Bahl D. Curcumin together with anticancer medicine: a nanomedicine evaluation. Pharmacol Res. 2019;139:91–105.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Gupta PK, Gahtori R, Govarthanan Okay, Sharma V, Pappuru S, Pandit S, et al. Latest tendencies in biodegradable polyester nanomaterials for most cancers remedy. Mater Sci Eng C. 2021;24: 112198.


    Google Scholar
     

  • 11.

    Liu F, Wu D, Kamm RD, Chen Okay. Evaluation of nanoprobe penetration by way of a lipid bilayer. Biochim Biophys Acta Biomembr. 2013;1828:1667–73.

    CAS 

    Google Scholar
     

  • 12.

    Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR. Perspective of Fe3O4 nanoparticles position in biomedical purposes. Biochem Res Int. 2016. https://doi.org/10.1155/2016/7840161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale EN. Publication tendencies in drug supply and magnetic nanoparticles. Nanoscale Res Lett. 2019. https://doi.org/10.1186/s11671-019-2994-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Sanadgol N, Wackerlig J. Developments of sensible drug-delivery programs primarily based on magnetic molecularly imprinted polymers for focused most cancers remedy: a brief evaluation. Pharmaceutics. 2020;12:831.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 15.

    Darroudi M, Ranjbar S, Esfandiar M, Khoshneviszadeh M, Hamzehloueian M, Khoshneviszadeh M, et al. Synthesis of novel triazole included thiazolone motifs having promising antityrosinase exercise by way of inexperienced nanocatalyst CuI-Fe3O4@SiO2 (TMS-EDTA). Appl Organomet Chem. 2020. https://doi.org/10.1002/aoc.5962.

    Article 

    Google Scholar
     

  • 16.

    Wang Z, Li J, Tian X, Wang X, Yu Y, Owusu KA, et al. Porous nickel–iron selenide nanosheets as extremely environment friendly electrocatalysts for oxygen evolution response. ACS Appl Mater Interfaces. 2016;8:19386–92. https://doi.org/10.1021/acsami.6b03392.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Roopashree B, Gayathri V, Mukund H. Synthesis, characterization, and organic actions of zinc, cadmium, copper, and nickel complexes containing meta -aminophenyl benzimidazole. J Coord Chem. 2012;65:1354–70.

    CAS 

    Google Scholar
     

  • 18.

    Snoussi Y, Bastide S, Abderrabba M, Chehimi MM. Sonochemical synthesis of Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd: a core/double shell nanocomposite for catalytic purposes. Ultrason Sonochem. 2018;41:551–61. https://doi.org/10.1016/j.ultsonch.2017.10.021.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Mehrafrooz B, Pedram MZ, Ghafar-Zadeh E. An improved technique for magnetic nanocarrier drug supply throughout the cell membrane. Sensors. 2018;18:381.

    PubMed Central 

    Google Scholar
     

  • 20.

    Pathak A, Patnaik S, Gupta KC. Latest tendencies in non-viral vector-mediated gene supply. Biotechnol J. 2009;4(11):1559–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Sultana J, Sarma D. Ag-catalyzed azide-alkyne cycloaddition: copper free approaches for synthesis of 1,4-disubstituted 1,2,3-triazoles. Catal Rev Sci Eng. 2020;62:96–117. https://doi.org/10.1080/01614940.2019.1673443.

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Barahuie F, Dorniani D, Saifullah B, Gothai S, Hussein MZ, Pandurangan AK, et al. Sustained launch of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int J Nanomedicine. 2017;12:2361–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH, Parvin N. Present tendencies in chemical modifications of magnetic nanoparticles for focused drug supply in most cancers chemotherapy. Drug Metab Rev. 2020;52(1):205–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a evaluation of FDA-approved supplies and scientific trials to this point. Pharm Res. 2016. https://doi.org/10.1007/s11095-016-1958-5.

    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Anselmo AC, Mitragotri S. Nanoparticles within the clinic: an replace. Bioeng Transl Med. 2019;4: e10143. https://doi.org/10.1002/btm2.10143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Kievit FM, Zhang M. Most cancers nanotheranostics: enhancing imaging and remedy by focused supply throughout organic limitations. Adv Mater. 2011. https://doi.org/10.1002/adma.201102313.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Hofmann-Amtenbrink M, Grainger DW, Hofmann H. Nanoparticles in drugs: present challenges going through inorganic nanoparticle toxicity assessments and standardizations. Nanomed Nanotechnol Biol Med. 2015;11(7):1689–94.

    CAS 

    Google Scholar
     

  • 28.

    Micha JP, Goldstein BH, Birk CL, Rettenmaier MA, Brown JV. Abraxane within the remedy of ovarian most cancers: the absence of hypersensitivity reactions. Gynecol Oncol. 2006;100:437–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Vissers C, Ming GL, Tune H. Nanoparticle expertise and stem cell remedy staff up towards neurodegenerative issues. Adv Drug Deliv Rev. 2019;148:239–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Das RK, Pramanik A, Majhi M, Mohapatra S. Magnetic mesoporous silica gated with doped carbon dot for site-specific drug supply, fluorescence, and MR imaging. Langmuir. 2018;34:5253–62. https://doi.org/10.1021/acs.langmuir.7b04268.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Tomitaka A, Kaushik A, Kevadiya BD, Mukadam I, Gendelman HE, Khalili Okay, et al. Floor-engineered multimodal magnetic nanoparticles to handle CNS ailments. Drug Discov Immediately. 2019;24(3):873–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Barrios-Gumiel A, Sepúlveda-Crespo D, Jiménez JL, Gómez R, Muñoz-Fernández MÁ, de la Mata FJ. Dendronized magnetic nanoparticles for HIV-1 seize and fast diagnostic. Colloids Surf B Biointerfaces. 2019;181:360–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based methods for remedy of ocular illness. Acta Pharm Sin B. 2017;7(3):281–91.

    PubMed 

    Google Scholar
     

  • 34.

    El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH. Magnetic nanoparticles-based drug and gene supply programs for the remedy of pulmonary ailments. Nanomedicine. 2017. https://doi.org/10.2217/nnm-2016-0341.

    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Cho Okay, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug supply in most cancers. Clin Most cancers Res. 2008;14(5):1310–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Liao H, Nehl CL, Hafner JH. Biomedical purposes of plasmon resonant steel nanoparticles. Nanomedicine. 2006;1:201–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Faraji AH, Wipf P. Nanoparticles in mobile drug supply. Bioorg Med Chem. 2009;17:2950–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Cherkasov VR, Mochalova EN, Babenyshev AV, Rozenberg JM, Sokolov IL, Nikitin MP. Antibody-directed metal-organic framework nanoparticles for focused drug supply. Acta Biomater. 2020;103:223–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Sisay B, Abrha S, Yilma Z, Assen A, Molla F, Tadese E, et al. Most cancers nanotheranostics: a brand new paradigm of simultaneous analysis and remedy. J Drug Deliv Ther. 2014;4(5):79–86.

    CAS 

    Google Scholar
     

  • 40.

    Yang C, Merlin D. Can naturally occurring nanoparticle-based focused drug supply successfully deal with inflammatory bowel illness? Skilled Opin Drug Deliv. 2020. https://doi.org/10.1080/17425247.2020.1698543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Gisbert-Garzarán M, Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for the remedy of advanced bone ailments: bone most cancers, bone an infection and osteoporosis. Pharmaceutics. 2020;12:83.

    PubMed Central 

    Google Scholar
     

  • 42.

    Albinali KE, Zagho MM, Deng Y, Elzatahry AA. A perspective on magnetic core–shell carriers for responsive and focused drug supply programs. Int J Nanomed. 2019;14:1707–23.

    CAS 

    Google Scholar
     

  • 43.

    Lockwood NA, De Pablo JJ, Abbott NL. Affect of surfactant tail branching and group on the orientation of liquid crystals at aqueous–liquid crystal interfaces. Langmuir. 2005;21:6805–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Akhavan P, Ebrahim NA, Fetrati MA, Pezeshkan A. Main tendencies in data administration analysis: a bibliometric examine. Scientometrics. 2016;107:1249–64. https://doi.org/10.1007/s11192-016-1938-x.

    Article 

    Google Scholar
     

  • 45.

    Niu B, Hong S, Yuan J, Peng S, Wang Z, Zhang X. International tendencies in sediment-related analysis in earth science throughout 1992–2011: a bibliometric evaluation. Scientometrics. 2014;98:511–29. https://doi.org/10.1007/s11192-013-1065-x.

    Article 

    Google Scholar
     

  • 46.

    Aghaei Chadegani A, Salehi H, Md Yunus MM, Farhadi H, Fooladi M, Farhadi M, et al. A comparability between two predominant tutorial literature collections: net of science and scopus databases. Asian Soc Sci. 2013;9:18–26. https://doi.org/10.5539/ass.v9n5p18.

    Article 

    Google Scholar
     

  • 47.

    van Eck NJ, Waltman L, Jan van Eck N, Waltman L, van Eck NJ, Waltman L. Textual content mining and visualization utilizing VOSviewer. 2011. arxiv:1109.2058.

  • 48.

    van Eck NJ, Waltman L. Software program survey: VOSviewer, a pc program for bibliometric mapping. Scientometrics. 2010;84:523–38.

    PubMed 

    Google Scholar
     

  • 49.

    Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. International patterns and tendencies in colorectal most cancers incidence and mortality. Intestine. 2017;66:683–91.

    PubMed 

    Google Scholar
     

  • 50.

    Siegel RL, Torre LA, Soerjomataram I, Hayes RB, Bray F, Weber TK, et al. International patterns and tendencies in colorectal most cancers incidence in younger adults. Intestine. 2019;68:2179–85. https://doi.org/10.1136/gutjnl-2019-319511.

    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article 

    Google Scholar
     

  • 52.

    Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal most cancers. Nat Med. 2015;21:1350–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Siegel RL, Miller KD, Jemal A. Most cancers statistics, 2019. CA Most cancers J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Bhaskaran NA, Kumar L. Treating colon cancers with a non-conventional but strategic method: an outline of varied nanoparticulate programs. J Management Launch. 2021;336:16–39.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Kreuter J. Nanoparticles—a historic perspective. Int J Pharm. 2007;331(1):1–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Good nanocarrier-based drug supply programs for most cancers remedy and toxicity research: a evaluation. J Adv Res. 2019;15:1–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Mateescu MA, Ispas-Szabo P, Assaad E. Self-assembling in pure, artificial, and hybrid supplies with purposes in managed drug supply. Management Drug Deliv. Woodhead Publishing: Cambridge, UK. 2015; pp 163–223.

  • 58.

    Sung YK, Kim SW. Latest advances in polymeric drug supply programs. Biomater Res. 2020. https://doi.org/10.1186/s40824-020-00190-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Sharma D, Hussain CM. Good nanomaterials in pharmaceutical evaluation. Arab J Chem. 2020;13(1):3319–43.

    CAS 

    Google Scholar
     

  • 60.

    Bae KH, Chung HJ, Park TG. Nanomaterials for most cancers remedy and imaging. Mol Cells. 2011;31(4):295–302.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Present tendencies and challenges in most cancers administration and remedy utilizing designer nanomaterials. Nano Converg. 2019;6(1):1–30.

    CAS 

    Google Scholar
     

  • 62.

    Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, et al. Surfactant results on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem C. 2014;118:16209–17. https://doi.org/10.1021/jp5037266.

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Bhardwaj A, Jain N, Parekh Okay. Investigating the impact of outer layer of magnetic particles on cervical most cancers cells HeLa by magnetic fluid hyperthermia. Most cancers Nanotechnol. 2021;12:7. https://doi.org/10.1186/s12645-021-00076-w.

    CAS 
    Article 

    Google Scholar
     

  • 64.

    Rajan A, Sharma M, Sahu NK. Assessing magnetic and inductive thermal properties of varied surfactants functionalised Fe3O4 nanoparticles for hyperthermia. Sci Rep. 2020;10:1–15. https://doi.org/10.1038/s41598-020-71703-6.

    Article 

    Google Scholar
     

  • 65.

    Simionato F, Zecchetto C, Merz V, Cavaliere A, Casalino S, Gaule M, et al. A section II examine of liposomal irinotecan with 5-fluorouracil, leucovorin and oxaliplatin in sufferers with resectable pancreatic most cancers: the nITRO trial. Ther Adv Med Oncol. 2020;12: 175883592094796. https://doi.org/10.1177/1758835920947969.

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Zoetemelk M, Ramzy GM, Rausch M, Nowak-Sliwinska P. Drug–drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its exercise in colorectal carcinoma remedy. Molecules. 2020;25:2614.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 67.

    Rostamizadeh S, Nojavan M, Aryan R, Isapoor E, Azad M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: an environment friendly magnetic nanocatalyst and recyclable response media for the synthesis of quinazolin-4(3H)-one derivatives. J Mol Catal A Chem. 2013;374–375:102–10. https://doi.org/10.1016/j.molcata.2013.04.002.

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Asgharnasl S, Eivazzadeh-Keihan R, Radinekiyan F, Maleki A. Preparation of a novel magnetic bionanocomposite primarily based on factionalized chitosan by creatine and its utility within the synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1,8-dioxo-decahydroacridine derivatives. Int J Biol Macromol. 2020;144:29–46.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Rabenstein DL, Theriault Y. A nuclear magnetic resonance examine of the kinetics and equilibria for the oxidation of penicillamine and N-acetylpenicillamine by glutathione disulfide. Can J Chem. 1984;62:1672–80. https://doi.org/10.1139/v84-287.

    CAS 
    Article 

    Google Scholar
     

  • 70.

    Kumar S, Singhal N, Singh RK, Gupta P, Singh R, Jain SL. Twin catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide utilizing isobutyraldehyde because the sacrificial reductant. Dalton Trans. 2015;44:11860–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Xu Z, Hou Y, Solar S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc. 2007;129:8698–9. https://doi.org/10.1021/ja073057v.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Williams PS, Carpino F, Zborowski M. Magnetic nanoparticle drug carriers and their examine by quadrupole magnetic field-flow fractionation. Mol Pharm. 2009;6(5):1290–306.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111:3036–75. https://doi.org/10.1021/cr100230z.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 74.

    Rafiee Z, Panji Z. Synthesis and characterization of optically lively magnetic PAI/Fe3O4 nanocomposites. Amino Acids. 2018;50:1007–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Ahmad A, Gupta A, Ansari MM, Vyawahare A, Jayamurugan G, Khan R. Hyperbranched polymer-functionalized magnetic nanoparticle-mediated hyperthermia and niclosamide bimodal remedy of colorectal most cancers cells. ACS Biomater Sci Eng. 2020;6:1102–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Mu X, Qiao J, Qi L, Liu Y, Ma H. Building of a d-amino acid oxidase reactor primarily based on magnetic nanoparticles modified by a reactive polymer and its utility in screening enzyme inhibitors. ACS Appl Mater Interfaces. 2014;6:12979–87. https://doi.org/10.1021/am502901b.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 77.

    Boncel S, Herman AP, Budniok S, Jȩdrysiak RG, Jakóbik-Kolon A, Skepper JN, et al. In vitro focusing on and selective killing of T47D breast most cancers cells by purpurin and 5-fluorouracil anchored to magnetic CNTs: nitrene-based functionalization versus uptake, cytotoxicity, and intracellular destiny. ACS Biomater Sci Eng. 2016;2:1273–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Han G-C, Ouyang Y, Lengthy X-Y, Zhou Y, Li M, Liu Y-N, et al. (Carboxymethyl-dextran)-modified magnetic nanoparticles conjugated to octreotide for MRI purposes. Eur J Inorg Chem. 2010. https://doi.org/10.1002/ejic.201000715.

    Article 

    Google Scholar
     

  • 79.

    Cheng X-C, Kuai H-W. Synthesis, characterization, and magnetic properties of two new Co(II) coordination polymers with a carboxylate- and benzimidazolylcontaining ligand. Zeitschrift fur Naturforsch B. 2012;67:1255–62.

    CAS 

    Google Scholar
     

  • 80.

    Zhu L, Ma J, Jia N, Zhao Y, Shen H. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity research. Colloids Surf B Biointerfaces. 2009;68:1–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Goon IY, Zhang C, Lim M, Gooding JJ, Amal R. Managed fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+. Langmuir. 2010;26:12247–52. https://doi.org/10.1021/la101196r.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Kondo A, Fukuda H. Preparation of thermo-sensitive magnetic hydrogel microspheres and utility to enzyme immobilization. J Ferment Bioeng. 1997;84:337–41.

    CAS 

    Google Scholar
     

  • 83.

    Alavi M, Karimi N, Safaei M. Software of varied kinds of liposomes in drug supply programs. Adv Pharm Bull. 2017;7(1):3–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and purposes. Nanoscale Res Lett. 2013;8:102.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, et al. Nanoparticles and its biomedical purposes in well being and ailments: particular concentrate on drug supply. Environ Sci Pollut Res. 2020;27:19151–68. https://doi.org/10.1007/s11356-019-05211-0.

    CAS 
    Article 

    Google Scholar
     

  • 86.

    Si Y, Chen M, Wu L. Syntheses and biomedical purposes of hole micro-/nano-spheres with large-through-holes. Chem Soc Rev. 2016;45(3):690–714.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Skrabalak SE, Chen J, Solar Y, Lu X, Au L, Cobley CM, et al. Gold nanocages: synthesis, properties, and purposes. Acc Chem Res. 2008;41:1587–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of motion and scientific methods. Nat Rev Most cancers. 2003;3(5):330–8.

    CAS 

    Google Scholar
     

  • 89.

    Kaczirek Okay. ASCO 2016—replace colorectal liver metastases. Memo Magazine Eur Med Oncol. 2017;2017:103–5.


    Google Scholar
     

  • 90.

    Machover D, Goldschmidt E, Chollet P, Metzger G, Zittoun J, Marquet J, et al. Therapy of superior colorectal and gastric adenocarcinomas with 5-fluorouracil and high-dose folinic acid. J Clin Oncol. 1986;4:685–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Clares B, Biedma-Ortiz RA, Sáez-Fernández E, Prados JC, Melguizo C, Cabeza L, et al. Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for mixed hyperthermia and chemotherapy towards colon most cancers. Eur J Pharm Biopharm. 2013;85:329–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Anirudhan TS, Christa J, Binusreejayan. pH and magnetic area delicate folic acid conjugated protein–polyelectrolyte advanced for the managed and focused supply of 5-fluorouracil. J Ind Eng Chem. 2018;57:199–207.

    CAS 

    Google Scholar
     

  • 93.

    Garcia-Pinel B, Jabalera Y, Ortiz R, Cabeza L, Jimenez-Lopez C, Melguizo C, et al. Biomimetic magnetoliposomes as oxaliplatin nanocarriers: in vitro examine for potential utility in colon most cancers. Pharmaceutics. 2020;12:1–20.


    Google Scholar
     

  • 94.

    Ebadi M, Saifullah B, Buskaran Okay, Hussein MZ, Fakurazi S. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine. 2019;14:6661–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Garcia-Pinel B, Ortega-Rodríguez A, Porras-Alcalá C, Cabeza L, Contreras-Cáceres R, Ortiz R, et al. Magnetically lively pNIPAM nanosystems as temperature-sensitive biocompatible constructions for managed drug supply. Artif Cells Nanomed Biotechnol. 2020;48:1022–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Golbaz R, Khoei S, Khoee S, Shirvalilou S, Safa M, Mahdavi SRSR, et al. Apoptosis pathway within the mixed remedy of x-ray and 5-FU-loaded triblock copolymer-coated magnetic nanoparticles. Nanomedicine. 2020;15:2255–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Işıklan N, Polat S. Synthesis and characterization of thermo/pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) coated magnetic nanoparticles. Int J Biol Macromol. 2020;164:4499–515.

    PubMed 

    Google Scholar
     

  • 98.

    Mohammadi S, Khoei S, Mahdavi SR. The mix impact of poly(lactic-co-glycolic acid) coated iron oxide nanoparticles as 5-fluorouracil service and X-ray on the extent of DNA damages within the DU 145 human prostate carcinoma cell line. J Bionanosci. 2012;6:23–7.

    CAS 

    Google Scholar
     

  • 99.

    Asadi L, Shirvalilou S, Khoee S, Khoei S. Cytotoxic impact of 5-fluorouracil-loaded polymer-coated magnetite nanographene oxide mixed with radiofrequency. Anticancer Brokers Med Chem. 2018;18:1148–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Dabaghi M, Quaas R, Hilger I. The remedy of heterotopic human colon xenograft tumors in mice with 5-fluorouracil hooked up to magnetic nanoparticles together with magnetic hyperthermia is extra environment friendly than both remedy alone. Cancers. 2020;12:1–22.


    Google Scholar
     

  • 101.

    Shakeri-Zadeh A, Shiran MBM-B, Khoee S, Sharifi AMAM, Ghaznavi H, Khoei S. A brand new magnetic nanocapsule containing 5-fluorouracil: in vivo drug launch, antitumor, and pro-apoptotic results on CT26 cells allograft mannequin. J Biomater Appl. 2014;29:548–56.

    PubMed 

    Google Scholar
     

  • 102.

    Nemani KV, Ennis RC, Griswold KE, Gimi B. Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug remedy. J Biotechnol. 2015;203:32–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Rice LB. Federal funding for the examine of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–81. https://doi.org/10.1086/533452.

    Article 
    PubMed 

    Google Scholar
     

  • 104.

    Eynali S, Khoei S, Khoee S, Esmaelbeygi E. Analysis of the cytotoxic results of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon most cancers cell line HT-29. Int J Hyperth. 2017;33:327–35.

    CAS 

    Google Scholar
     

  • 105.

    Hati S, Kumar Dutta P, Dutta S, Munshi P, Sen S. Accessing benzimidazoles through a hoop distortion technique: an oxone mediated tandem response of 2-aminobenzylamines. Org Lett. 2016;18:3090–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, et al. Oxaliplatin–biomimetic magnetic nanoparticle assemblies for colon cancer-targeted chemotherapy: an in vitro examine. Pharmaceutics. 2019;11(8):395.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 107.

    Tabasi H, Hamed Mosavian MT, Sabouri Z, Khazaei M, Darroudi M. pH-responsive and CD44-targeting by Fe3O4/MSNs-NH2 nanocarriers for oxaliplatin loading and colon most cancers remedy. Inorg Chem Commun. 2021;125: 108430.

    CAS 

    Google Scholar
     

  • 108.

    Liu D, Li X, Chen C, Li C, Zhou C, Zhang W, et al. Goal-specific supply of oxaliplatin to HER2-positive gastric most cancers cells in vivo utilizing oxaliplatin-Au-Fe3O4-herceptin nanoparticles. Oncol Lett. 2018;15:8079–87. https://doi.org/10.3892/ol.2018.8323/summary.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Gogineni VR, Maddirela DR, Park W, Jagtap JM, Parchur AK, Sharma G, et al. Localized and triggered launch of oxaliplatin for the remedy of colorectal liver metastasis. J Most cancers. 2020;11:6982–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Dai J, Chen Y, Gong Y, Wei J, Cui X, Yu H, et al. The efficacy and security of irinotecan±bevacizumab in contrast with oxaliplatin±bevacizumab for metastatic colorectal most cancers: a meta-analysis. Med. 2019. https://doi.org/10.1097/MD.0000000000017384.

    Article 

    Google Scholar
     

  • 111.

    Sengupta S, Khatua C, Balla VK. In vitro carcinoma remedy utilizing magnetic nanocarriers beneath ultrasound and magnetic fields. ACS Omega. 2018;3:5459–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Serrà A, Gimeno N, Gómez E, Mora M, Sagristá ML, Vallés E. Magnetic mesoporous nanocarriers for drug supply with improved therapeutic efficacy. Adv Funct Mater. 2016;26:6601–11. https://doi.org/10.1002/adfm.201601473.

    CAS 
    Article 

    Google Scholar
     

  • 113.

    Wu D, Zhu L, Li Y, Wang H, Xu S, Zhang X, et al. Superparamagnetic chitosan nanocomplexes for colorectal tumor-targeted supply of irinotecan. Int J Pharm. 2020;584: 119394.

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Walko CM, Lindley C. Capecitabine: a evaluation. Clin Ther. 2005;27(1):23–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Hosseinkhani H. In-vitro evaluation of magnetic dextran–spermine nanoparticles for capecitabine supply to cancerous cells. Iran J Pharm Res. 2017;16:1320.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *