All-optical fluorescence blinking management in quantum dots with ultrafast mid-infrared pulses

[ad_1]

  • 1.

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    CAS 

    Google Scholar
     

  • 2.

    Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    CAS 

    Google Scholar
     

  • 3.

    Frantsuzov, P., Kuno, M., Jankó, B. & Marcus, R. A. Common emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008).


    Google Scholar
     

  • 4.

    Efros, A. L. & Nesbitt, D. J. Origin and management of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    CAS 

    Google Scholar
     

  • 5.

    Sauter, T., Neuhauser, W., Blatt, R. & Toschek, P. E. Remark of quantum jumps. Phys. Rev. Lett. 57, 1696–1698 (1986).

    CAS 

    Google Scholar
     

  • 6.

    Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of inexperienced fluorescent protein. Nature 388, 355–358 (1997).

    CAS 

    Google Scholar
     

  • 7.

    Kimble, H. J. The quantum web. Nature 453, 1023–1030 (2008).

    CAS 

    Google Scholar
     

  • 8.

    Michler, P. et al. A quantum dot single-photon turnstile system. Science 290, 2282–2285 (2000).

    CAS 

    Google Scholar
     

  • 9.

    Michalet, X. et al. Quantum dots for dwell cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS 

    Google Scholar
     

  • 10.

    Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot monitoring. Science 302, 442–445 (2003).

    CAS 

    Google Scholar
     

  • 11.

    Galland, C. et al. Two kinds of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    CAS 

    Google Scholar
     

  • 12.

    Chen, Y. et al. ‘Large’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    CAS 

    Google Scholar
     

  • 13.

    Mahler, B. et al. In the direction of non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    CAS 

    Google Scholar
     

  • 14.

    Garcia-Santamaria, F. et al. Breakdown of quantity scaling in Auger recombination in CdSe/CdS heteronanocrystals: the function of the core-shell interface. Nano Lett. 11, 687–693 (2011).

    CAS 

    Google Scholar
     

  • 15.

    Ji, B. et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol. 10, 170–175 (2015).

    CAS 

    Google Scholar
     

  • 16.

    Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with slender emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    CAS 

    Google Scholar
     

  • 17.

    Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).

    CAS 

    Google Scholar
     

  • 18.

    Hohng, S. & Ha, T. Close to-complete suppression of quantum dot blinking in ambient circumstances. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    CAS 

    Google Scholar
     

  • 19.

    Fomenko, V. & Nesbitt, D. J. Answer management of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Lett. 8, 287–293 (2008).

    CAS 

    Google Scholar
     

  • 20.

    Thomas, E. M. et al. Blinking suppression in extremely excited CdSe/ZnS quantum dots by electron switch below giant optimistic Gibbs (free) power change. ACS Nano 12, 9060–9069 (2018).

    CAS 

    Google Scholar
     

  • 21.

    Jha, P. P. & Guyot-Sionnest, P. Electrochemical switching of the photoluminescence of single quantum dots. J. Phys. Chem. C 114, 21138–21141 (2010).

    CAS 

    Google Scholar
     

  • 22.

    Hebling, J., Yeh, Okay.-L., Hoffmann, M. C., Bartal, B. & Nelson, Okay. A. Era of high-power terahertz pulses by tilted-pulse-front excitation and their utility potentialities. J. Choose. Soc. Am. B 25, B6–B19 (2008).

    CAS 

    Google Scholar
     

  • 23.

    Manzoni, C., Först, M., Ehrke, H. & Cavalleri, A. Single-shot detection and direct management of provider section drift of mid infrared pulses. Choose. Lett. 35, 757–759 (2010).

    CAS 

    Google Scholar
     

  • 24.

    Hamizi, N. A. & Johan M. R. Optical and FTIR research of CdSe quantum dots, In 2010 third Worldwide Nanoelectronics Convention (INEC) 887–887 (IEEE, 2010).

  • 25.

    Cherniavskaya, O., Chen, L., Islam, M. A. & Brus, L. Photoionization of particular person CdSe/CdS core/shell nanocrystals on silicon with 2-nm oxide is determined by floor band bending. Nano Lett. 3, 497–501 (2003).

    CAS 

    Google Scholar
     

  • 26.

    Javaux, C. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nat. Nanotechnol. 8, 206–212 (2013).

    CAS 

    Google Scholar
     

  • 27.

    Bharadwaj, P. & Novotny, L. Robustness of quantum dot power-law blinking. Nano Lett. 11, 2137–2141 (2011).

    CAS 

    Google Scholar
     

  • 28.

    Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: a common energy regulation conduct. J. Chem. Phys. 112, 3117–3120 (2000).

    CAS 

    Google Scholar
     

  • 29.

    Hasham, M. & Wilson, M. W. B. Sub-bandgap optical modulation of quantum dot blinking statistics. J. Phys. Chem. Lett. 11, 6404–6412 (2020).

    CAS 

    Google Scholar
     

  • 30.

    Empedocles, S. A. & Bawendi, M. G. Affect of spectral diffusion on the road shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).

    CAS 

    Google Scholar
     

  • 31.

    Patton, B., Langbein, W. & Woggon, U. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B 68, 125316 (2003).


    Google Scholar
     

  • 32.

    Bracker, A. S. et al. Binding energies of optimistic and unfavorable trions: From quantum wells to quantum dots. Phys. Rev. B 72, 035332 (2005).


    Google Scholar
     

  • 33.

    Beyler, A. P. et al. Pattern-averaged biexciton quantum yield measured by solution-phase photon correlation. Nano Lett. 14, 6792–6798 (2014).

    CAS 

    Google Scholar
     

  • 34.

    Rabouw, F. T. et al. Delayed exciton emission and its relation to blinking in CdSe quantum dots. Nano Lett. 15, 7718–7725 (2015).

    CAS 

    Google Scholar
     

  • 35.

    Hinterding, S. O. M., Vonk, S. J. W., van Harten, E. J. & Rabouw, F. T. Dynamics of intermittent delayed emission in single CdSe/CdS quantum dots. J. Phys. Chem. Lett. 11, 4755–4761 (2020).

    CAS 

    Google Scholar
     

  • 36.

    Jones, M., Lo, S. S. & Scholes, G. D. Quantitative modeling of the function of floor traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl Acad. Sci. USA 106, 3011–3016 (2009).

    CAS 

    Google Scholar
     

  • 37.

    Sher, P. H. et al. Energy regulation provider dynamics in semiconductor nanocrystals at nanosecond timescales. Appl. Phys. Lett. 92, 101111 (2008).


    Google Scholar
     

  • 38.

    Nandan, Y. & Mehata, M. S. Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantum dots. Sci. Rep. 9, 2 (2019).


    Google Scholar
     

  • 39.

    Elward, J. M. & Chakraborty, A. Impact of dot measurement on exciton binding power and electron-hole recombination chance in CdSe quantum dots. J. Chem. Principle Comput. 9, 4351–4359 (2013).

    CAS 

    Google Scholar
     

  • 40.

    Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark impact in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    CAS 

    Google Scholar
     

  • 41.

    Park, Y.-S., Bae, W. Okay., Pietryga, J. M. & Klimov, V. I. Auger recombination of biexcitons and unfavorable and optimistic trions in particular person quantum dots. ACS Nano 8, 7288–7296 (2014).

    CAS 

    Google Scholar
     

  • 42.

    Bae, W. Okay. et al. Managed alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    CAS 

    Google Scholar
     

  • 43.

    Boucrot, E. et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465 (2015).

    CAS 

    Google Scholar
     

  • 44.

    Watanabe, S. et al. Ultrafast endocytosis at mouse hippocampal synapses. Nature 504, 242–247 (2013).

    CAS 

    Google Scholar
     

  • 45.

    Doherty, M. W. et al. The nitrogen-vacancy color centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS 

    Google Scholar
     

  • 46.

    Srivastava, A. et al. Optically energetic quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    CAS 

    Google Scholar
     

  • 47.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    CAS 

    Google Scholar
     

  • 48.

    Koperski, M. et al. Single photon emitters in exfoliated WSe2 buildings. Nat. Nanotechnol. 10, 503–506 (2015).

    CAS 

    Google Scholar
     

  • 49.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, Okay. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum mild from an atomically skinny semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    CAS 

    Google Scholar
     

  • 50.

    Carbone, L. et al. Synthesis and micrometer-scale meeting of colloidal CdSe/CdS nanorods ready by a seeded development method. Nano Lett. 7, 2942–2950 (2007).

    CAS 

    Google Scholar
     

  • 51.

    Zhao, J., Chen, O., Strasfeld, D. B. & Bawendi, M. G. Biexciton quantum yield heterogeneities in single CdSe (CdS) core (shell) nanocrystals and its correlation to exciton blinking. Nano Lett. 12, 4477–4483 (2012).

    CAS 

    Google Scholar
     

  • 52.

    Park, Y.-S. et al. Close to-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured utilizing single-particle spectroscopy. Phys. Rev. Lett. 106, 187401 (2011).


    Google Scholar
     

  • 53.

    Park, Y.-S., Bae, W. Okay., Padilha, L. A., Pietryga, J. M. & Klimov, V. I. Impact of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14, 396–402 (2014).

    CAS 

    Google Scholar
     

  • 54.

    Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    CAS 

    Google Scholar
     

  • 55.

    Shulenberger, Okay. E. et al. Multiexciton lifetimes reveal triexciton emission pathway in CdSe nanocrystals. Nano Lett. 18, 5153–5158 (2018).

    CAS 

    Google Scholar
     

  • 56.

    Steiner, D. et al. Willpower of band offsets in heterostructured colloidal nanorods utilizing scanning tunneling spectroscopy. Nano Lett. 8, 2954–2958 (2008).

    CAS 

    Google Scholar
     

  • 57.

    Sitt, A., Sala, F. D., Menagen, G. & Banin, U. Multiexciton engineering in seeded core/shell nanorods: switch from type-I to quasi-type-II regimes. Nano Lett. 9, 3470–3476 (2009).

    CAS 

    Google Scholar
     

  • 58.

    Panfil, Y. E., Shamalia, D., Cui, J., Koley, S. & Banin, U. Digital coupling in colloidal quantum dot molecules; the case of CdSe/CdS core/shell homodimers. J. Chem. Phys. 151, 224501 (2019).


    Google Scholar
     

  • 59.

    Rainó, G. et al. Probing the wave perform delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. ACS Nano 5, 4031–4036 (2011).


    Google Scholar
     

  • 60.

    Ayari, S. et al. Tuning trion binding power and oscillator energy in a laterally finite 2D system: CdSe nanoplatelets as a mannequin system for trion properties. Nanoscale 12, 14448–14458 (2020).

    CAS 

    Google Scholar
     

  • 61.

    Giansante, C. & Infante, I. Floor traps in colloidal quantum dots: a mixed experimental and theoretical perspective. J. Phys. Chem. Lett. 8, 5209–5215 (2017).

    CAS 

    Google Scholar
     

  • 62.

    Pillai, M., Goglio, J. & Walker, T. G. Matrix Numerov technique for fixing Schrödinger’s equation. Am. J. Phys. 80, 1017–1019 (2012).


    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *