A thermoreversible antibacterial zeolite-based nanoparticles loaded hydrogel promotes diabetic wound therapeutic through detrimental issue neutralization and ROS scavenging | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Kalan LR, Meisel JS, Loesche MA, Horwinski J, Soaita I, Chen X, Uberoi A, Gardner SE, Grice EA. Pressure- and species-level variation within the microbiome of diabetic wounds is related to medical outcomes and therapeutic efficacy. Cell Host Microbe. 2019;25:641-655.e645.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 2.

    Bai Q, Han Ok, Dong Ok, Zheng C, Zhang Y, Lengthy Q, Lu T. Potential functions of nanomaterials and know-how for diabetic wound therapeutic. Int J Nanomed. 2020;15:9717–43.

    CAS 

    Google Scholar
     

  • 3.

    Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated irritation in regular and diabetic wound therapeutic. J Immunol. 2017;199:17–24.

    PubMed 
    CAS 

    Google Scholar
     

  • 4.

    Patel S, Srivastava S, Singh MR, Singh D. Mechanistic perception into diabetic wounds: pathogenesis, molecular targets and remedy methods to tempo wound therapeutic. Biomed Pharmacother. 2019;112: 108615.

    PubMed 
    CAS 

    Google Scholar
     

  • 5.

    Demyanenko IA, Zakharova VV, Ilyinskaya OP, Vasilieva TV, Fedorov AV, Manskikh VN, Zinovkin RA, Pletjushkina OY, Chernyak BV, Skulachev VP, Popova EN. Mitochondria-targeted antioxidant SkQ1 improves dermal wound therapeutic in genetically diabetic mice. Oxid Med Cell Longev. 2017;2017: 6408278.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Wang S, Zheng H, Zhou L, Cheng F, Liu Z, Zhang H, Wang L, Zhang Q. Nanoenzyme-reinforced injectable hydrogel for therapeutic diabetic wounds contaminated with multidrug resistant micro organism. Nano Lett. 2020;20:5149–58.

    PubMed 
    CAS 

    Google Scholar
     

  • 7.

    Huang SM, Wu CS, Chiu MH, Wu CH, Chang YT, Chen GS, Lan CE. Excessive glucose surroundings induces M1 macrophage polarization that impairs keratinocyte migration through TNF-α: an essential mechanism to delay the diabetic wound therapeutic. J Dermatol Sci. 2019;96:159–67.

    PubMed 
    CAS 

    Google Scholar
     

  • 8.

    Zhao R, Liang H, Clarke E, Jackson C, Xue M. Irritation in persistent wounds. Int J Mol Sci. 2016;17:2085.

    PubMed Central 

    Google Scholar
     

  • 9.

    Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Concentrating on oxidative stress and mitochondrial dysfunction within the remedy of impaired wound therapeutic: a scientific evaluate. Antioxidants. 2018;7:98.

    PubMed Central 

    Google Scholar
     

  • 10.

    Zhou X, Li M, Xiao M, Ruan Q, Chu Z, Ye Z, Zhong L, Zhang H, Huang X, Xie W, et al. ERβ accelerates diabetic wound therapeutic by ameliorating hyperglycemia-induced persistent oxidative stress. Entrance Endocrinol. 2019;10:499.


    Google Scholar
     

  • 11.

    Pasupuleti VR, Arigela CS, Gan SH, Salam SKN, Krishnan KT, Rahman NA, Jeffree MS. A evaluate on oxidative stress, diabetic problems, and the roles of honey polyphenols. Oxid Med Cell Longev. 2020;2020:8878172.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Feng J, Luo J, Deng L, Zhong Y, Wen X, Cai Y, Li J. Naringenin-induced HO-1 ameliorates excessive glucose or free fatty acids-associated apoptosis through PI3K and JNK/Nrf2 pathways in human umbilical vein endothelial cells. Int Immunopharmacol. 2019;75: 105769.

    PubMed 
    CAS 

    Google Scholar
     

  • 13.

    Tatmatsu-Rocha JC, Tim CR, Avo L, Bernardes-Filho R, Brassolatti P, Kido HW, Hamblin MR, Parizotto NA. Mitochondrial dynamics (fission and fusion) and collagen manufacturing in a rat mannequin of diabetic wound therapeutic handled by photobiomodulation: comparability of 904 nm laser and 850 nm light-emitting diode (LED). J Photochem Photobiol B. 2018;187:41–7.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 14.

    Warren CM, Ziyad S, Briot A, Der A, Iruela-Arispe ML. A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Sign. 2014;7: 2004235.


    Google Scholar
     

  • 15.

    Gao D, Chen T, Chen S, Ren X, Han Y, Li Y, Wang Y, Guo X, Wang H, Chen X, et al. Concentrating on hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic remedy. Nanomicro Lett. 2021;13:99.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 16.

    Sonamuthu J, Cai Y, Liu H, Kasim MSM, Vasanthakumar VR, Pandi B, Wang H, Yao J. MMP-9 responsive dipeptide-tempted pure protein hydrogel-based wound dressings for accelerated therapeutic motion of contaminated diabetic wound. Int J Biol Macromol. 2020;153:1058–69.

    PubMed 
    CAS 

    Google Scholar
     

  • 17.

    Lei Z, Zhu W, Zhang X, Wang X, Wu P. Bio-inspired ionic pores and skin for theranostics. Adv Funct Mater. 2021;31:2008020.

    CAS 

    Google Scholar
     

  • 18.

    Ji X, Ge L, Liu C, Tang Z, Xiao Y, Chen W, Lei Z, Gao W, Blake S, De D, et al. Capturing useful two-dimensional nanosheets from sandwich-structure vermiculite for most cancers theranostics. Nat Commun. 2021;12:1124.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 19.

    Wang S, Shen Z, Shen Z, Dong Y, Li Y, Cao Y, Zhang Y, Guo S, Shuai J, Yang Y. Machine-learning micropattern manufacturing. Nano Immediately. 2021;38: 101152.

    CAS 

    Google Scholar
     

  • 20.

    Serati-Nouri H, Jafari A, Roshangar L, Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N. Biomedical functions of zeolite-based supplies: a evaluate. Mater Sci Eng C Mater Biol Appl. 2020;116: 111225.

    PubMed 
    CAS 

    Google Scholar
     

  • 21.

    Mastinu A, Kumar A, Maccarinelli G, Bonini SA, Premoli M, Aria F, Gianoncelli A, Memo M. Zeolite clinoptilolite: therapeutic virtues of an historical mineral. Molecules. 2019;24:1517.

    PubMed Central 
    CAS 

    Google Scholar
     

  • 22.

    Zhong Y, Xiao H, Seidi F, Jin Y. Pure polymer-based antimicrobial hydrogels with out artificial antibiotics as wound dressings. Biomacromol. 2020;21:2983–3006.

    CAS 

    Google Scholar
     

  • 23.

    Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes mixed pluronic F127 hydrogel promote persistent diabetic wound therapeutic and full pores and skin regeneration. Int J Nanomed. 2020;15:5911–26.

    CAS 

    Google Scholar
     

  • 24.

    Su D, Tsai HI, Xu Z, Yan F, Wu Y, Xiao Y, Liu X, Wu Y, Parvanian S, Zhu W, et al. Exosomal PD-L1 capabilities as an immunosuppressant to advertise wound therapeutic. J Extracell Vesicles. 2019;9:1709262.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Jin L, Guo X, Gao D, Wu C, Hu B, Tan G, Du N, Cai X, Yang Z, Zhang X. NIR-responsive MXene nanobelts for wound therapeutic. NPG Asia Mater. 2021;13:1–9.


    Google Scholar
     

  • 26.

    Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, Luo J, Liu YW, Yin H, Huang J, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound restore by selling angiogenesis. Theranostics. 2018;8:1607–23.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 27.

    Li J, Track S, Meng J, Tan L, Liu X, Zheng Y, Li Z, Yeung KWK, Cui Z, Liang Y, et al. 2D MOF periodontitis photodynamic ion remedy. J Am Chem Soc. 2021;143:15427–39.

    PubMed 
    CAS 

    Google Scholar
     

  • 28.

    Huang R, Hu M, Liang W, Zheng J, Du Y, Lin Y, Wang H, Guo W, Zeng Z, Li C. One-step preparation of inexperienced material for steady antibacterial functions. Engineering. 2021;7:326–33.

    CAS 

    Google Scholar
     

  • 29.

    Wang Y, Gao D, Liu Y, Guo X, Chen S, Zeng L, Ma J, Zhang X, Tian Z, Yang Z. Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact Mater. 2021;6:1513–27.

    PubMed 
    CAS 

    Google Scholar
     

  • 30.

    Meng J, Li J, Liu J, Zhang X, Jiang G, Ma L, Hu ZY, Xi S, Zhao Y, Yan M, et al. Common strategy to fabricating graphene-supported single-atom catalysts from doped ZnO strong options. ACS Cent Sci. 2020;6:1431–40.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 31.

    Zheng L, Zhang Y, Lin H, Kang S, Li Y, Solar D, Chen M, Wang Z, Jiao Z, Wang Y, et al. Ultrasound and near-infrared mild dual-triggered upconversion zeolite-based nanocomposite for hyperthermia-enhanced multimodal melanoma remedy through a exact apoptotic mechanism. ACS Appl Mater Interfaces. 2020;12:32420–31.

    PubMed 
    CAS 

    Google Scholar
     

  • 32.

    Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, Ji X, Xie T, Farokhzad OC, Tao W. Germanene-based theranostic supplies for surgical adjuvant remedy: inhibiting tumor recurrence and wound an infection. Matter. 2020;3:127–44.


    Google Scholar
     

  • 33.

    Xiong Y, Chen S, Ye F, Su L, Zhang C, Shen S, Zhao S. Synthesis of a combined valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem Commun. 2015;51:4635–8.

    CAS 

    Google Scholar
     

  • 34.

    Hassan MH, Stanton R, Secora J, Trivedi DJ, Andreescu S. Ultrafast removing of phosphate from eutrophic waters utilizing a cerium-based metal-organic framework. ACS Appl Mater Interfaces. 2020;12:52788–96.

    PubMed 
    CAS 

    Google Scholar
     

  • 35.

    Maiti S, Pramanik A, Mahanty S. Terribly excessive pseudocapacitance of metallic natural framework derived nanostructured cerium oxide. Chem Commun. 2014;50:11717–20.

    CAS 

    Google Scholar
     

  • 36.

    Yang Y, Mao Z, Huang W, Liu L, Li J, Li J, Wu Q. Redox enzyme-mimicking actions of CeO(2) nanostructures: intrinsic affect of uncovered sides. Sci Rep. 2016;6:35344.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 37.

    Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, Gu Y, Xu Y, Chen J, Wu X, Ren F. A novel drug supply provider comprised of nimodipine drug resolution and a nanoemulsion: preparation, characterization, in vitro, and in vivo research. Int J Nanomed. 2020;15:1161–72.

    CAS 

    Google Scholar
     

  • 38.

    Ooi CH, Ling YP, Abdullah WZ, Mustafa AZ, Pung SY, Yeoh FY. Physicochemical analysis and in vitro hemocompatibility examine on nanoporous hydroxyapatite. J Mater Sci Mater Med. 2019;30:44.

    PubMed 

    Google Scholar
     

  • 39.

    Zheng Y, He R, Wang P, Shi Y, Zhao L, Liang J. Exosomes from LPS-stimulated macrophages induce neuroprotection and useful enchancment after ischemic stroke by modulating microglial polarization. Biomater Sci. 2019;7:2037–49.

    PubMed 
    CAS 

    Google Scholar
     

  • 40.

    Qi Y, Guo L, Jiang Y, Shi Y, Sui H, Zhao L. Mind supply of quercetin-loaded exosomes improved cognitive operate in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv. 2020;27:745–55.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 41.

    Kong N, Zhang H, Feng C, Liu C, Xiao Y, Zhang X, Mei L, Kim JS, Tao W, Ji X. Arsenene-mediated a number of independently focused reactive oxygen species burst for most cancers remedy. Nat Commun. 2021;12:4777.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 42.

    Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, Solar M, Yang P, Jiang S, Ying X, Du Y. ROS-responsive nano-drug supply system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney damage. Theranostics. 2020;10:2342–57.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 43.

    Andrabi SS, Yang J, Gao Y, Kuang Y, Labhasetwar V. Nanoparticles with antioxidant enzymes defend injured spinal twine from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Management Launch. 2020;317:300–11.

    PubMed 
    CAS 

    Google Scholar
     

  • 44.

    Chen Q, Du Y, Zhang Ok, Liang Z, Li J, Yu H, Ren R, Feng J, Jin Z, Li F, et al. Tau-targeted multifunctional nanocomposite for combinational remedy of Alzheimer’s illness. ACS Nano. 2018;12:1321–38.

    PubMed 
    CAS 

    Google Scholar
     

  • 45.

    Kim WY, Gained M, Koo S, Zhang X, Kim JS. Mitochondrial H(2)S(n)-mediated anti-inflammatory theranostics. Nanomicro Lett. 2021;13:168.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 46.

    Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of mobile homeostasis. Redox Biol. 2015;6:472–85.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 47.

    Rizwan H, Pal S, Sabnam S, Pal A. Excessive glucose augments ROS technology regulates mitochondrial dysfunction and apoptosis through stress signalling cascades in keratinocytes. Life Sci. 2020;241: 117148.

    PubMed 
    CAS 

    Google Scholar
     

  • 48.

    Jalali S, Ardjmand M, Ramavandi B, Nosratinia F. Elimination of amoxicillin from wastewater within the presence of H(2)O(2) utilizing modified zeolite Y-MgO catalyst: an optimization examine. Chemosphere. 2021;274: 129844.

    PubMed 
    CAS 

    Google Scholar
     

  • 49.

    Meng J, Liu Z, Liu X, Yang W, Wang L, Li Y, Cao Y-C, Zhang X, Mai L. Scalable fabrication and energetic website identification of MOF shell-derived nitrogen-doped carbon hole frameworks for oxygen discount. J Mater Sci Technol. 2021;66:186–92.


    Google Scholar
     

  • 50.

    Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes speed up wound therapeutic by means of their anti-inflammation results in a diabetic rat mannequin. Artif Cells Nanomed Biotechnol. 2019;47:3793–803.

    PubMed 
    CAS 

    Google Scholar
     

  • 51.

    Turabee MH, Jeong TH, Ramalingam P, Kang JH, Ko YT. N, N, N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the remedy of mind tumor. Carbohydr Polym. 2019;203:302–9.

    PubMed 
    CAS 

    Google Scholar
     

  • 52.

    Wang J, Chen XY, Zhao Y, Yang Y, Wang W, Wu C, Yang B, Zhang Z, Zhang L, Liu Y, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled therapeutic in persistent wounds. ACS Nano. 2019;13:11686–97.

    PubMed 
    CAS 

    Google Scholar
     

  • 53.

    Ouyang J, Feng C, Zhang X, Kong N, Tao W. Black Phosphorus in organic functions: evolutionary journey from monoelemental supplies to composite supplies. Acc Mater Res. 2021;2:489–500.

    CAS 

    Google Scholar
     

  • 54.

    Wang T, Zheng Y, Shen Y, Shi Y, Li F, Su C, Zhao L. Chitosan nanoparticles loaded hydrogels promote pores and skin wound therapeutic by means of the modulation of reactive oxygen species. Artif Cells Nanomed Biotechnol. 2018;46:138–49.

    PubMed 

    Google Scholar
     

  • 55.

    Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, Xie A, Wang J, Sui X, Deng L, et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer remedy. Proc Natl Acad Sci USA. 2020;117:28667–77.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 56.

    Chen G, He L, Zhang P, Zhang J, Mei X, Wang D, Zhang Y, Ren X, Chen Z. Encapsulation of inexperienced tea polyphenol nanospheres in PVA/alginate hydrogel for selling wound therapeutic of diabetic rats by regulating PI3K/AKT pathway. Mater Sci Eng C Mater Biol Appl. 2020;110: 110686.

    PubMed 
    CAS 

    Google Scholar
     

  • 57.

    Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, et al. Environment friendly angiogenesis-based diabetic wound therapeutic/pores and skin reconstruction by means of bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome launch. ACS Nano. 2019;13:10279–93.

    PubMed 
    CAS 

    Google Scholar
     

  • 58.

    Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D. Antioxidant and anti inflammatory potential of curcumin accelerated the cutaneous wound therapeutic in streptozotocin-induced diabetic rats. Int Immunopharmacol. 2014;20:322–30.

    PubMed 
    CAS 

    Google Scholar
     

  • 59.

    Barman PK, Koh TJ. Macrophage dysregulation and impaired pores and skin wound therapeutic in diabetes. Entrance Cell Dev Biol. 2020;8:528.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Kimball AS, Davis FM, denDekker A, Joshi AD, Schaller MA, Bermick J, Xing X, Burant CF, Obi AT, Nysz D, et al. The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid manufacturing in diabetic wound restore. Immunity. 2019;51:258-271.e5.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 61.

    Xiao J, Chen S, Yi J, Zhang H, Ameer GA. A cooperative copper metal-organic framework-hydrogel system improves wound therapeutic in diabetes. Adv Funct Mater. 2017;27:1604872.

    PubMed 

    Google Scholar
     

  • 62.

    Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D. Porous polymers as multifunctional materials platforms towards task-specific functions. Adv Mater. 2019;31: e1802922.

    PubMed 

    Google Scholar
     

  • 63.

    Blake S, Kim NY, Kong N, Ouyang J, Tao W. Silk’s most cancers functions as a biodegradable materials. Mater Immediately Maintain. 2021;13: 100069.


    Google Scholar
     

  • 64.

    Malli S, Bories C, Pradines B, Loiseau PM, Ponchel G, Bouchemal Ok. In situ forming pluronic® F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur J Pharm Biopharm. 2017;112:143–7.

    PubMed 
    CAS 

    Google Scholar
     

  • 65.

    Li Z, Zhang X, Ouyang J, Chu D, Han F, Shi L, Liu R, Guo Z, Gu GX, Tao W, et al. Ca(2+)-supplying black phosphorus-based scaffolds fabricated with microfluidic know-how for osteogenesis. Bioact Mater. 2021;6:4053–64.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 66.

    Huang X, Solar J, Chen G, Niu C, Wang Y, Zhao C, Solar J, Huang H, Huang S, Liang Y, et al. Resveratrol promotes diabetic wound therapeutic through SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis. Entrance Pharmacol. 2019;10:421.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *